






occur in ;5% of pediatric Ph-like ALL cases and more frequently in
young adults.27,34,45,48,50-52 The amino terminus of JAK2 fusion
proteins is encoded by the partner gene fused in-frame to the carboxyl
terminal portion of JAK2, including the kinase (TK) domain with or
without the upstream pseudokinase domain.16,27,34,40,42,43,45,48,51,52,68

The expression of JAK2 fusion proteins in vitro results in STAT5
activation and abrogates growth factor dependence in murine
lymphoid growth factor–dependent cell lines (eg, Ba/F3), and
treatment with ruxolitinib or other JAK2 inhibitors reverses both
phenotypes.24,27,34,42,63,69,70

Rearrangements of the erythropoietin receptor (EPOR-R)
involving $4 partner genes (IGH, IGK, LAIR1, and THADA;
Table 1) are a recurrent alteration in Ph-like ALL, with an overall
frequency of ;1% among B-ALL cases. 27,34,44,51,71 EPOR-Rs
cause overexpression of C-terminal truncated EPOR proteins that
have lost negative regulatory domains (Figure 3), resulting in JAK-
STAT signaling activation (Figure 4) and in vitro sensitivity to
ruxolitinib.44 Germ line mutations in EPOR produce analogous
truncated EPOR proteins and cause autosomal dominant benign
erythrocytosis.72

Other JAK/STAT-activating lesions

Uncommon deletions of SH2B3 (encoding LNK, a negative regu-
lator of JAKs) and IL7RA insertions/deletions occur in Ph-like
ALL and lead to activated signaling that is sensitive to JAK
inhibition (Figure 3).21,24,73 Rare cases with other structural
mutations have been reported and may also be sensitive to JAK
inhibitors (Table 1).34

ABL-class fusions

The ABL-class fusion genes and chimeric proteins are structurally
analogous to the JAK2 fusions described above and include rearrange-
ments (translocations or intrachromosomal deletions/inversions) that

target ABL1 itself, ABL2, CSF1R, or PDGFRB.27,34,39,45-48,51,52,74 A
single case of an adult with FIP1L1-PDGFRA Ph-like ALL has recently
been described,whichmay expand the spectrumofABL-class fusions.52

ABL-class fusions occur in ;3% to5%of pediatricALL,quite similar to
the incidence of Ph1ALL,whereas ;2% to3%of adultALLcases have
ABL-class fusions.34,51,52 The encoded chimeras include the carboxyl
terminal portion of the ABL-class protein with its TK domain intact
joined in-frame to the amino terminal portion of the partner protein
(Figure 4). Just like BCR-ABL1, theABL-class fusion proteins abrogate
IL3 dependence in Ba/F3 cells and are similarly sensitive to imatinib and
dasatinib that target their structurally homologous TK domains (and
presumably other TKIs that target BCR-ABL1, although these have not
been tested extensively to date).27,34 Imatinib and dasatinib also show
potent clinical activity in primary patient samples and patient-derived
xenograft (PDX) models of Ph-like ALL with ABL-class fusions.27,34

Uncommon fusions involving kinase genes

Other rare fusions involving kinase genes have been reported in Ph-
like ALL (Table 1), including ETV6-NTRK3 fusion,34,51 which also
occurs in infantile fibrosarcoma and secretory breast cancer.75,76

TRK inhibitors are being tested in clinical trials (eg, NCT02576431)
with highly promising results across a spectrum of adult and pediatric
solid tumors sharing TRK fusions.77 Other rare kinase fusions in Ph-
likeALL involveBLNK,DGKH,FGFR1, IL2RB,LYN,PTK2B, TYK2,
and RAS pathway genes.34,43,45,51,52,54,78 The functional properties of
rare kinase fusions have generally not been validated, andonlyFGFR1
has a Food and Drug Administration–approved kinase inhibitor,
ponatinib,whichwas developed for use against theBCR-ABL1T315I
gatekeeper mutation.

Other genomic alterations in Ph-like ALL

Although they usually accompany other genomic rearrangements,
mutations and/or deletions in IKZF1, PAX5, and EBF1 have been

CSF1R
fusions

STAT5 

ABL1
fusions

ABL2
fusions

PDGFRA
fusions

PDGFRB
fusions

ABL inhibitors
PI3K pathway inhibitors

CRLF2
F232C

JAK2 fusions 

STATs 

JAKs 

mTOR 

PI3K 

CRLF2
(TSLPR) 

IL7R 

EPOR 

JAK inhibitors
PI3K pathway inhibitors

HDAC inhibitors
anti-TSLPR antibodies & CAR T cells  

mTOR

PI3K 

FLT3 inhibitors
TRK inhibitors
FAK inhibitors

PI3K pathway inhibitors
MEK inhibitors

mTOR  

PI3K 

STATs 

ERK 

MAPK 

FLT3R 

other fusions 
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reported in isolation in Ph-like ALL.34 Isolated mutations in the Ras
pathway also occur in a small number of Ph-like ALL cases, but have
been reported in conjunction with CRLF2 overexpression with and
without JAK alterations.34,50

Germ line genomic factors linked to Ph-like ALL

SeveralNorthAmerican studies have reported that Ph-likeALL ismore
common in persons of self-declared Hispanic/Latino ancestry.14,50,51

Genome-wide association studies have shown that the risk of
developing Ph-like ALL is elevated in persons with specific GATA3
polymorphisms, and this link is particularly strong for Ph-like ALL
with CRLF2-R.79,80 GATA3 risk alleles occur significantly more
frequently in individuals with high Native American genetic ancestry
and US Hispanics than in those of European descent.79

Clinical features and outcomes of Ph-like ALL
in children and adults

The incidence of Ph-like ALL increases across the age spectrum and
has been associatedwith inferior clinical outcomes inmost studies.One
small SJCRH study showed equivalent outcomes for Ph-like and
non–Ph-likeALLpatients, but 15%of Ph-likeALLpatients underwent
HSCT in first remission due to poorMRD response.35 Peak prevalence
appears to occur in adolescence and young adulthood, although
additional studies have recently confirmed that the Ph-like subtype
is common in adults .40 years of age with B-ALL.49-52,80,81 The
relative frequency of different sentinel genetic alterations differs
between pediatric and adult ALL (Figure 1), with adults having a
higher frequency of JAK2 fusions, EPOR-R, and, among CRFL2-R
cases, more IGH-CRLF2 than P2RY8-CRLF2 compared with
children.51,52 Ph-like ALL is associated with other high-risk clinical
features besides age, including elevated WBC count, high rates of
end-induction MRD, and increased risk of treatment failure and
relapse.9,10,15,30,31,34,35,45,48-51 The inferior survival for Ph-like ALL

occurs regardless of the underlying genomic alteration, and survival is
particularly poor for Ph-like patients with elevated end-of-induction
MRD. Some patients with Ph-like ALL experience overt induction
failure, particularly those with PDGFRB-R.29,32,34,46

Precision medicine opportunities for
treatment of Ph-like ALL

Because of the poor outcome associated with Ph-like ALL and the
nature of the underlying sentinel genetic aberrations, there is great
interest in using targeted therapies or precision medicine approaches.
Although the Ph-like gene expression signature is useful diagnostically,
it is not a therapeutic target. The prognostic significance and po-
tential for therapeutic targeting of the IKZF1 deletion remains
unclear given its association to date with both unfavorable (Ph1,
Ph-like)9,10,23,28,31,48,58,82-84 and favorable (DUX4/ERG-dysregu-
lated)85-87 B-ALL subtypes. ALL-associated IKZF1 alterations have
been linked with upregulation of multiple genes involved in cellular
proliferation and chemoresistance.88 One study found that IKZF1-
deleted ALL patients benefited from periodic vincristine/steroid
pulses during maintenance therapy,83 prompting the Dutch Child-
hood Oncology Group to extend maintenance therapy and to include
vincristine and steroid pulses for patients with IKZF1 deletions
(www.trialregister.nl; NTR3379). The benefit of maintenance
vincristine/steroid pulses for patients with IKZF1-deleted ALL was
not confirmed by other groups.89 Furthermore, the COG uses many
more maintenance vincristine/steroid pulses than other groups
and still finds IKZF1 deletion to be an adverse prognostic factor.
Preclinical studies have demonstrated the therapeutic potential of
retinoic acid compounds and FAK inhibitors in IKZF1-deleted ALL
models, but these approaches have not yet been tested clinically.90,91

Deletions involving other B-lymphoid transcription factor genes,
such as EBF1 and PAX5, are also recurrent alterations in Ph-like
ALL, but strategies to target these lesions therapeutically have not
yet been developed. The greatest opportunity for precision medicine
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approaches in Ph-like ALL is to use therapies targeted at the
underlying sentinel molecular lesions, many of which are likely to
be drivers of leukemogenesis. Different diagnostic approaches to
identify these lesions have been used. As more cases are analyzed,
more fusion partners and splice variants of known fusions have been
identified for the ABL-class, JAK2, and rarer kinase genes (Table 1),
emphasizing the need to use unbiased sequencing technologies, such as
RNAseq.34,51,52Analysis that relies only onRT-PCR for known fusions
will invariably miss some, and perhaps many, targetable alterations.

Opportunities for treatment of patients with ABL-class fusions

Experimentally, ABL-class fusions phenocopy BCR-ABL1 and are
similarly sensitive to imatinib and dasatinib.27,34 There is significant
anecdotal evidence that imatinib and dasatinib can induce remissions
and clear MRD in patients with Ph-like ALL and ABL-class fusions
that have responded poorly to chemotherapy.20,29,32,34,46 Based on
these factors, there is strong interest in testing TKI therapy in this high-
risk ALL subtype. Clinical experience in Ph1ALL has established that
imatinib or dasatinib can be added safely to combination chemotherapy
regimens.3,4,6-8 The real challenge is how to identify these patients in
real-time given the variety of ABL-class fusions that currently includes
$13ABL1, 3ABL2, 3CSF1R, and7PDGFRB fusions (Table1),which
can have different breakpoints producing different fusion transcripts and
with new fusion partners identified on a regular basis. A second major
challenge is the rarity of this ALL subtype. Because ABL-class fusions
occur in ,5% of ALL cases, there are only a few hundred patients
diagnosed in the United States each year, including both adults and
children. Implementation of randomized trials of chemotherapy with
and without added TKI therapy thus is logistically difficult and creates
significant challenges in study design and interpretation, although
several single-arm trials have been initiated (Table 2).

There are several diagnostic strategies that could be used to
identify ABL-class fusions. The COG developed a complex
diagnostic strategy that first performs LDA to identify patients with
Ph-like ALL enrolled in their AALL1131 trial (NCT02883049)
and then uses a series of multiplex RT-PCR assays, FISH, and
DNA sequencing to identify the underlying genomic aberration
(Figure 5).51 Patients with Ph-like ALL and ABL-class fusions have
dasatinib added to chemotherapy starting with the second month of
treatment. Accrual to this treatment stratum began in late 2016.
Because there is limited knowledge about the outcome of Ph-like
ALL patients with ABL-class fusions that have good risk prognostic
factors, such as young age, lower WBC count, or excellent early
MRD response, the dasatinib arm of COG AALL1131 is limited to
children with NCI HR ALL.

The SJCRH group is performing RNAseq in all patients enrolled in
their Total XVII study, which opened for enrollment in early 2017
(NCT03117751),with results available before the endof thefirstmonth
of therapy. Patients found to have ABL-class fusions have dasatinib
added to the chemotherapy backbone. Most other groups do not yet
have the ability to perform real-time RNAseq on all newly diagnosed
ALL patients enrolled in their trials.

In 2015, the MD Anderson Cancer Center (MDACC) opened a
phase 2 trial of dasatinib in combinationwithmultiagent chemotherapy
in older children and adults with relapsed/refractory Ph-like ALL
and ABL-class fusions (NCT02420717). Eligible patients are initially
treatedwith up to3weeksofdasatinibmonotherapywith the additionof
multiagent chemotherapy for those patients with suboptimal response
to single-agent therapy.Theprimaryoutcomemeasurement is complete
response rate after 6 weeks of therapy.

Opportunities for treatment of patients with JAK/STAT

pathway lesions

Preclinical studies have demonstrated constitutive activation of
kinase signaling networks in vitro in subsets of Ph-like ALL
harboring JAK pathway alterations, including CRLF2-R with or
without JAKmutations, JAK2 fusions, EPOR-R, and other alterations
(Figure 3).12,13,17,24,27,34,44,63,92 Additional studies have reported in
vivo activity of various JAK inhibitors in PDX models of JAK
pathway–mutant Ph-like ALL, providing rationale for testing of JAK
inhibitor–based therapies in the clinic.24,44,69,70,93,94 However, pre-
clinical activity of ruxolitinib in PDX models has been somewhat
variable, depending on underlying genetic alterations (eg, CRLF2-R
vs JAK2 fusion).24 Rigorous clinical testing of JAK inhibition in
patientswith these specific alterations and elucidation of biomarkers of
response and resistance may provide additional insight into these
differential responses. Additional therapies of potential relevance
for CRLF2-R ALL currently in preclinical testing include USP9X
inhibitors, the histone deacetylase inhibitor givinostat, anti-TSLPR/
CRLF2 antibodies, and TSLPR-directed chimeric antigen receptor
T-cell immunotherapy.67,95-97

The COG AALL1521 phase 2 trial (NCT02723994) is currently
investigating the safety and efficacy of combining ruxolitinib with
postinduction chemotherapy in children, adolescents, and young adults
with newly diagnosed, high-risk JAK pathway–mutant Ph-like ALL
(Figure 5). High-risk Ph-like B-ALL patients with CRLF2/JAK
pathway lesions are eligible to enter AALL1521 for postinduction
therapycombining ruxolitinibwith a standard chemotherapybackbone.
Patients are stratified by underlying genetic alterations (CRLF2-R, JAK
mutations, JAK2 fusions, and EPOR-R) and by end-induction MRD
status to determine the potential differential efficacy of combination
therapy in each subset. The primary end point of this nonrandomized
trial is 3-year event-free survival vs that of historic control patients
treated with chemotherapy alone.

In addition to COG AALL1521, a subarm of SJCRH Total XVII
is adding ruxolitinib to chemotherapy in children with JAK-mutant
Ph-like ALL. The sameMDACC trial testing dasatinib in patients with
Ph-like ALL and ABL-class fusions is also evaluating ruxolitinib in
combinationwithmultiagent chemotherapy in older children and adults
with relapsed/refractory JAK-mutant ALL, using complete response
rate after 6 weeks of reinduction therapy as the primary end point.
Patients with JAK pathway–mutant Ph-like ALL are initially treated
with up to 3 weeks of ruxolitinib monotherapy with multiagent
chemotherapy added for patients with an incomplete response.

Table 2. Current clinical trials of TKI-based therapies in children and adults with Ph-like ALL

Ph-like ALL alterations Kinase inhibitor Disease status Age, y Clinical trial

ABL class Dasatinib Newly diagnosed 1-30 NCT01406756 (COG AALL1131)

ABL class Dasatinib Newly diagnosed 1-18 NCT03117751 (SJCRH Total XVII)

ABL class Dasatinib Relapsed $10 NCT02420717 (MDACC)

CRLF2/JAK pathway Ruxolitinib Newly diagnosed 1-21 NCT02723994 (COG AALL1521)

CRLF2/JAK pathway Ruxolitinib Newly diagnosed 1-18 NCT03117751 (SJCRH Total XVII)

CRLF2/JAK pathway Ruxolitinib Relapsed $10 NCT02420717 (MDACC)
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Opportunities for treatment of patients with Ras/MAPK

pathway alterations

Up to 6% of patients with Ph-like ALL harbor mutations in the Ras/
MAPK signaling pathway (Figure 3) as their sole abnormality.34

AlthoughRas itself has been impossible to inhibit directly, downstream
molecules, such as MEK, are targetable with a class of Food and Drug
Administration–approved inhibitors (eg, trametinib, selumetinib, and
cobimetinib). Trametinib has been approved for use in BRAF mutant
melanoma, and studies are ongoing to define the maximum tolerated
dose in children (NCT02124772)with relapsed/refractory solid tumors.
TheCOGADVL1521phase 2 trialwill test the efficacy of trametinib in
juvenilemyelomonocytic leukemia, a rare pediatric myeloproliferative
neoplasm driven by lesions in the Ras/MAPK pathway.

Future perspectives

Multiple studies have shown that Ph-like ALL is associated with poor
survival in both children and adults and have identified a variety of
underlying genomic aberrations, many of which can be targeted by
commercially available small molecule inhibitors. Anecdotal reports
have described the clinical activity of these agents, and single-arm trials
have now been initiated that test the addition of targeted agents,
including dasatinib and ruxolitinib, to standard chemotherapy back-
bones. Key questions for the future include how to identify Ph-like
ALL patients with targetable genomic lesions in real-time, whether
this approach will improve survival, whether there are clinical factors
or prognostic biomarkers that can identify patients that will or will
not benefit from TKI therapy, the role of allogeneic HSCT in this ALL

subset, and whether combinations of targeted therapies will be more
effective than a single drug.
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