To the editor:

Bone marrow histology for the diagnosis of essential thrombocytethemia in children: a multicenter Italian study

Maria Caterina Putti,1 Marco Pizzi,2 Irene Bertozzi,3 Elena Sabattini,4 Concetta Micalizzi,5 Piero Farruggia,6 Ugo Ramenghi,7 Simone Cesaro,8 Giovanna Russo,9 Edoardo Peroni,9 Massimo Rugge,2 Fabizio Fabris,3 and Maria Luigia Randi3

1Clinic of Pediatric Hemo-Oncology, Department of Woman’s and Children’s Health, 2Surgical Pathology and Cytopathology Unit, Department of Medicine, and 3First Medical Clinic, Department of Medicine, University of Padua, Padua, Italy; 4Hematopathology Unit, Sant’Orsola-Malpighi Hospital, Bologna, Italy; 5Department of Hemato-Oncology, Gaslini Institute, Genova, Italy; 6Pediatric Hematology and Oncology Unit, Civico Hospital, Palermo, Italy; 7Pediatric Hematology, University of Torino, Turin, Italy; 8Pediatric Onco-Hematology Unit, University of Verona, Verona, Italy; and 9Pediatric Hemato-Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy

Essential thrombocytthemia (ET) is a myeloproliferative neoplasm (MPN) that mainly affects middle-aged patients. Although pediatric cases occur, they are rare, and their molecular features considerably differ from the adult counterparts: JAK2V617F mutation occurs in only 25% of cases,1 CALR mutations are found in <10% of patients,2 and the MPLW515L mutation is anecdotal.3 Overall, <40% of children with unexplained, long-lasting thrombocytosis have a clonal marker of ET.2

After the release of the 2001 World Health Organization (WHO) classification,4 bone marrow (BM) evaluation has become a cornerstone of ET diagnosis. However, the majority of studies has focused on adults, and little is known about the role of BM biopsy in pediatric ET. In fact, BM biopsy is seldom performed in children with a clinical picture of ET due to the invasiveness of the procedure. The main objective of this study was to explore the relevance of BM histology in children with high platelet counts in order to identify possible differences in: (1) primary vs reactive/secondary thrombocytosis (PedST) of childhood; and (2) pediatric (PedET) vs adult (AdET) cases of ET.

Treatment-naive diagnostic BM samples were collected from 21 pediatric patients clinically diagnosed with ET according to the 2008 WHO diagnostic criteria in 7 Italian pediatric centers (2011-2016). All cases were reviewed (separately and in joint sessions) by 2 hematopathologists (M.P., E.S.) who were blind to any clinical and/or molecular information. Six BM samples of PedST were used as controls, 5 of which had lymphoma and 1 prolonged spontaneously remitted thrombocytosis. The histological features were compared with those of 36 consecutive AdET cases, which were strictly diagnosed according to the 2008 WHO criteria in 7 Italian pediatric centers (2011-2016). The histological features were compared with those of 36 consecutive AdET cases, which were strictly diagnosed according to the 2008 WHO criteria in 7 Italian pediatric centers (2011-2016). The remaining 4 mutated cases exhibited a BM picture consistent with ET. Re-evaluation of the 12 triple negative (3NEG) cases revealed features consistent with ET in 9 cases, 2 cases compatible with pre-PMF (Figure 1 A-C), and 1 case with characteristics of secondary thrombocytosis (ST).

These results provide insight into the complex scenario of high platelet counts in childhood. Thrombocytosis is indeed a common
finding in children. Most cases are secondary/reactive forms, which spontaneously normalize over time. Rare hereditary thrombocytosis has also been documented. Primary thrombocytosis is extremely rare, with an estimated incidence of ~1 per 10 million annually.

The differential diagnosis of pediatric thrombocytosis may be challenging in clinical practice, and, unlike in adults, molecular biology is of limited value. Children with suspected ET have indeed low rates of driver mutations with a lower allele burden than adults.

Consequently, molecular studies cannot definitively identify the nature of several putative pediatric ET cases. Histological evaluation may prove to be of greater value, but little has been reported in the literature so far. The only few available studies have either examined single cases or small series of pediatric ET and have reported variable results.

Moreover, another large study about pediatric ET did not specifically address BM importance.

Our study is seemingly the largest published study on BM histology in pediatric patients with clinically diagnosed ET to date. Among 21 children, 20 cases had BM findings consistent with MPN (ET: n = 16; PV: n = 1; pre-PMF: n = 3) and 1 3NEG case had a histological picture of ST. The findings of histologically confirmed ET were distinct from those of PedST, and are thus consistent with the data status. Furthermore, the interpathologist agreement regarding the PedET were similar to those of AdET, irrespective of the mutational

Presence of BM reticulin fibrosis, n (%) 6 (28.5)* 0 6 (16.7)

MKD, megakaryocytes density; NA, not available.

*Two of these cases had histological features consistent with pre-PMF, 1 had masked PV, and 3 had ET.

In conclusion, the data presented in this study clearly show that BM evaluation is pivotal for ET diagnosis among the pediatric population, as it is for adults. BM assessment proves particularly helpful in the differential diagnosis between ET and its clinical mimickers (ie, PMF, PV, and ST) and should be part of the diagnostic workup of children with long-lasting unexplained thrombocytosis, together with several other clinical, laboratory, and molecular parameters.

Acknowledgments: The authors thank Holly D. Sedutto for her insightful reading of the paper.

This work was supported in part by the University of Padua and by Associazione Italiana Leucemie (Padua, Italy) (M.C.P.).

Contribution: M.L.R. and M.C.P. designed the research, contributed patients, and performed statistical analysis; M.P. and E.S. contributed patients and performed statistical analysis; M.P. and E.S. performed histological studies; E.P. performed the molecular analysis; F.F. and M.R. contributed patients and performed statistical analysis; M.P. and E.S. performed histological studies; E.P. performed the molecular analysis; F.F. and M.R. contributed to study design and made major intellectual contributions to the manuscript; C.M., P.F., U.R., S.C., and G.R. contributed patients and participated in discussions about the data; and all authors read and approved the final draft of the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Maria Luigia Randi, Department of Medicine, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; e-mail: marialuigia.randi@unipd.it.

References

DOI 10.1182/blood-2017-01-761767

© 2017 by The American Society of Hematology
Bone marrow histology for the diagnosis of essential thrombocythemia in children: a multicenter Italian study

Maria Caterina Putti, Marco Pizzi, Irene Bertozzi, Elena Sabattini, Concetta Micalizzi, Piero Farruggia, Ugo Ramenghi, Simone Cesaro, Giovanna Russo, Edoardo Peroni, Massimo Rugge, Fabizio Fabris and Maria Luigia Randi

Updated information and services can be found at:
http://www.bloodjournal.org/content/129/22/3040.full.html

Articles on similar topics can be found in the following Blood collections
 Free Research Articles (4741 articles)
 Myeloid Neoplasia (1743 articles)
 Pediatric Hematology (537 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml