To the editor:

Bone marrow histology for the diagnosis of essential thrombocythemia in children: a multicenter Italian study

Maria Caterina Putti,1 Marco Pizzi,2 Irene Bertozzi,3 Elena Sabattini,4 Concetta Micalizzi,5 Piero Farruggia,6 Ugo Ramenghi,7 Simone Cesaro,8 Giovanna Russo,9 Edoardo Peroni,9 Massimo Rugge,2 Fabizio Fabris,3 and Maria Luigia Randi3

1Clinic of Pediatric Hemato-Oncology, Department of Woman’s and Children’s Health, 2Surgical Pathology and Cytopathology Unit, Department of Medicine, and 3First Medical Clinic, Department of Medicine, University of Padua, Padua, Italy; 4Hematopathology Unit, Sant’Orsola-Malpighi Hospital, Bologna, Italy; 5Department of Hemato-Oncology, Gaslini Institute, Genova, Italy; 6Pediatric Hematology and Oncology Unit, Civico Hospital, Palermo, Italy; 7Pediatric Hematology, University of Torino, Turin, Italy; 8Pediatric Onco-Hematology Unit, University of Verona, Verona, Italy; and 9Pediatric Hemato-Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy

Essential thrombocythemia (ET) is a myeloproliferative neoplasm (MPN) that mainly affects middle-aged patients. Although pediatric cases occur, they are rare, and their molecular features considerably differ from the adult counterparts: JAK2V617F mutation occurs in only 25% of cases,1 CALR mutations are found in <10% of patients,2 and the MPLW515L mutation is anecdotal.3 Overall, <40% of children with unexplained, long-lasting thrombocytosis have a clonal marker of ET.2

After the release of the 2001 World Health Organization (WHO) classification,4 bone marrow (BM) evaluation has become a cornerstone of ET diagnosis. However, the majority of studies has focused on adults, and little is known about the role of BM biopsy in pediatric ET. In fact, BM biopsy is seldom performed in children with a clinical picture of ET due to the invasiveness of the procedure. The main objective of this study was to explore the relevance of BM histology in children with high platelet counts in order to identify possible differences in: (1) primary vs reactive/secondary thrombocytosis (PedST) of childhood; and (2) pediatric (PedET) vs adult (AdET) cases of ET.

Treatment-naive diagnostic BM samples were collected from 21 pediatric patients clinically diagnosed with ET according to the 2008 WHO diagnostic criteria in 7 Italian pediatric centers (2011-2016). All cases were reviewed (separately and in joint sessions) by 2 hematopathologists (M.P., E.S.) who were blind to any clinical and/or molecular information. Six BM samples of PedST were used as controls, 5 of which had lymphoma and 1 prolonged spontaneously remitted thrombocytosis. The histological features were compared with those of 36 consecutive AdET cases, which were strictly diagnosed according to the 2008 WHO criteria and enrolled during the same time period as the children. Statistical analyses were performed on data recorded at the time of diagnosis. The study was approved by the local ethics committee.

Clinically, PedET was characterized by higher median platelet counts than those in AdET, (PedET: 1251 × 10⁹/L; AdET: 681 × 10⁹/L), more frequent splenomegaly (PedET: 14 of 21 cases [67%]; AdET: 7 of 36 cases [19.4%]), and abdominal pain (PedET: 4 of 21 cases [19.0%]; AdET: 0 of 36 cases) (P < .001).

PedET differed from PedST in key histological parameters (Figure 1A-B). PedET showed higher megakaryocyte (MK) density (37.5 MK/mm² vs 9.2 MK/mm²; P < .001, loose MK clusters (21 of 21 [100%]), and occasional grade-I reticulin fibrosis (6 of 21 [28.5%]), which was never documented in PedST cases (Table 1).8 Thorough morphological and immunohistochemical evaluation showed similar features in PedET and AdET, despite higher BM cellularity (as is commonly seen in children3), and higher MK density was reported in the pediatric group. This increase in MK density in children was due to higher cellularity values (ie, the differences in MK density were not statistically significant after adjusting for cellularity). PedET was also histologically analyzed according to the patients’ age and mutational status, although no differences were found.

Histological reevaluation also identified cases with morphological features, suggesting an MPN other than ET. Among the 6 JAK2V617F-mutated cases, 1 showed histological features of polycythemia vera (PV) and another of prefibrotic early primary myelofibrosis (pre-PMF). The remaining 4 mutated cases exhibited a BM picture consistent with ET. Re-evaluation of the 12 triple negative (3NEG) cases revealed features consistent with ET in 9 cases, 2 cases compatible with pre-PMF (Figure 1 A-C), and 1 case with characteristics of secondary thrombocytosis (ST).

These results provide insight into the complex scenario of high platelet counts in childhood. Thrombocytosis is indeed a common

Figure 1. Representative histological features of pediatric cases with (A) ST, (B) ET, and (C) pre-PMF. (A) Normocellular BM with scattered nondescript MK. (B) Loose clusters of MKs with hypersegmented (staghorn-like) nuclei. (C) Tight clusters of atypical MKs with bulbous (cloud-like) nuclei. Hematoxylin and eosin stain, original magnification ×10 and ×20; Leica DM4000 B optic microscope, DFC420 camera and acquisition software (Leica Microsystems, Milan, Italy).
finding in children.8 Most cases are secondary/reactive forms, which spontaneously normalize over time. Rare hereditary thrombocytosis has also been documented.9 Primary thrombocytosis is extremely rare, and so far. The only few available studies have either examined single cases or small series of pediatric ET and have reported variable results.14,15 Consequently, molecular studies cannot definitively identify the nature of several putative pediatric ET cases. Histological evaluation may prove to be of greater value, but little has been reported in the literature regarding the interpathologist agreement regarding the histological picture of ST. The histology was consistent with ST in 1 case, suggesting that a subset of 3NEG ET is indeed misdiagnosed ST.23 We have recently observed 2 cases of putative 3NEG ET (BM not available for histologic evaluation) who spontaneously achieved hematological remission after 15 years of sustained thrombocytosis. All of these cases illustrate the importance of BM evaluation, possibly in tertiary centers, for diagnosing pediatric MPN.24

In conclusion, the data presented in this study clearly show that BM evaluation is pivotal for ET diagnosis among the pediatric population, as it is for adults. BM assessment proves particularly helpful in the differential diagnosis between ET and its clinical mimickers (ie, PMF, PV, and ST) and should be part of the diagnostic workup of children with long-lasting unexplained thrombocytosis, together with several other clinical, laboratory, and molecular parameters.

Acknowledgments: The authors thank Holly D. Sedutto for her insightful reading of the paper.

This work was supported in part by the University of Padua and by Associazione Italiana Leucemie (Padua, Italy) (M.C.P.).

Contribution: M.L.R. and M.C.P. designed the research, contributed patients, and made major intellectual contributions to the final draft of the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Maria Luigia Randi, Department of Medicine, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; e-mail: marialuigia.randi@unipd.it.

References


DOI 10.1182/blood-2017-01-761767
© 2017 by The American Society of Hematology
Bone marrow histology for the diagnosis of essential thrombocytemia in children: a multicenter Italian study

Maria Caterina Putti, Marco Pizzi, Irene Bertozzi, Elena Sabattini, Concetta Micalizzi, Piero Farruggia, Ugo Ramenghi, Simone Cesaro, Giovanna Russo, Edoardo Peroni, Massimo Rugge, Fabrizio Fabris and Maria Luigia Randi