Correspondence

To the editor:

Eculizumab treatment efficiently prevents C5 cleavage without C5a generation in vivo

We read with interest the letter by Burwick et al in Blood1 and were surprised by their conclusion that eculizumab failed to inhibit C5a generation in vivo. Eculizumab is a monoclonal antibody binding to human C5 preventing its cleavage to C5a and C5b. The authors investigated plasma concentrations of C5a and sC5b-9 in 1 patient with hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome treated with eculizumab.

They showed that, before the start of eculizumab, C5a concentration was low, whereas the sC5b-9 concentration was substantially elevated. This is consistent with what frequently is found when the terminal pathway is activated in vivo: sC5b-9 has a long half-life of ~60 minutes compared with the very short half-life of C5a. They showed that, before the start of eculizumab, C5a concentration was low, whereas the sC5b-9 concentration was substantially elevated. This is consistent with what frequently is found when the terminal pathway is activated in vivo: sC5b-9 has a long half-life of ~60 minutes compared with the very short half-life of C5a. This is consistent with what frequently is found when the terminal pathway is activated in vivo: sC5b-9 has a long half-life of ~60 minutes compared with the very short half-life of C5a.

We then tested the effects of eculizumab in vitro by activating human serum and convincingly documented that eculizumab efficiently blocked C5a as measured by both the BD and the RND kits, as well as sC5b-9 measured by a singleplex assay developed in our laboratory (Figure 1B).

C5 might be cleaved directly, without a traditional C5 convertase (ie, in the absence of C3).4 However, it has never been shown that C5a is released without simultaneous C5b-9 formation. In fact, Krisinger et al5 showed that an even more effective C5b-9 complex was formed by direct cleavage of C5 by thrombin. Furthermore, C5-9 formation has been documented by a conformational change of C5, making a “C5b-like” molecule generating a C5-9 complex without release of C5a.6 Generation of C5a, without formation of C5b-9, has never been documented, and the data by Burwick et al do not document this, but rather reveal a false-positive reaction in their assay.

The authors described a patient with the HELLP syndrome. One possible explanation for their findings would be that this patient was exposed to an antigen related to this particular disease, detected in the BD C5a assay. This was definitely not the case, because the 3 patients we describe had aHUS and showed the same pattern. Thus, this reactivity seems to be directly related to eculizumab treatment. Interestingly, we found a correlation between the BD C5a assay and the eculizumab-C5 complexes, in an assay described by us recently.7

These data underscore the importance of confirming unexpected and surprising data by using alternative and different assays, instead

Notably, the BD C5a assay detected an abrupt increase in C5a in all 3 patients immediately after eculizumab treatment was started, whereas no increase was found using the RND or the Hycult (HC) kits (Figure 1A). Plasma sC5b-9 immediately decreased in the aHUS patients, as described for the patient with HELLP syndrome, using the same assay as Burwick et al, consistent with efficient blocking of C5. We then tested the effects of eculizumab in vitro by activating human serum and convincingly documented that eculizumab efficiently blocked C5a as measured by both the BD and the RND kits, as well as sC5b-9 measured by a singleplex assay developed in our laboratory (Figure 1B).

C5 might be cleaved directly, without a traditional C5 convertase (ie, in the absence of C3).4 However, it has never been shown that C5a is released without simultaneous C5b-9 formation. In fact, Krisinger et al5 showed that an even more effective C5b-9 complex was formed by direct cleavage of C5 by thrombin. Furthermore, C5-9 formation has been documented by a conformational change of C5, making a “C5b-like” molecule generating a C5-9 complex without release of C5a.6 Generation of C5a, without formation of C5b-9, has never been documented, and the data by Burwick et al do not document this, but rather reveal a false-positive reaction in their assay.

The authors described a patient with the HELLP syndrome. One possible explanation for their findings would be that this patient was exposed to an antigen related to this particular disease, detected in the BD C5a assay. This was definitely not the case, because the 3 patients we describe had aHUS and showed the same pattern. Thus, this reactivity seems to be directly related to eculizumab treatment. Interestingly, we found a correlation between the BD C5a assay and the eculizumab-C5 complexes, in an assay described by us recently.7

These data underscore the importance of confirming unexpected and surprising data by using alternative and different assays, instead

Figure 1. Effect of eculizumab on C5a and sC5b-9 generation in vivo and in vitro. (A) Plasma samples from 3 patients with aHUS were obtained at baseline (week 0) and during 8 weeks after the start of eculizumab treatment. C5a measured by the BD Bioscience ELISA (BD) showed an abrupt increase in all 3 patients after the start of eculizumab, whereas no increase was seen in the C5a assays from RND Systems or HC. The controls (Ctr.) are shown to the left: negative controls (open circle, square and triangle symbols corresponding to those given for the kits, but with an inner horizontal line) represent 3 normal human EDTA plasma samples. Positive controls (similar open symbols as for the 3 kits, but with inner horizontal and vertical lines) represent C5a for the BD and RND kit and C5desarg for the Hycult kit. As expected, sC5b-9 (BD) decreased immediately after eculizumab treatment was started (right y-axis). (B) A pool of normal human serum (NS) was activated with heat aggregated IgG (AS), revealing an excessive increase in C5a both in the BD and RND kits, as well as in sC5b-9. The latter was measured by a singleplex assay using an international complement activation standard given in complement activation units (CAU) per milliliter.6 Addition of eculizumab (EC) to the serum before activation completely abrogated C5a formation as detected in both the BD and the RND assay, as well sC5b-9 formation.
of relying on a single commercial kit. This example illustrates how false conclusions were drawn based on results from an assay that was not satisfactorily validated for the purpose for which it was used. Thus, our data document that eculizumab efficiently inhibited C5a generation both in vitro and in vivo, in contrast to the wrong conclusion drawn in the paper by Burwick et al.1

This study was approved by the regional ethical committees and was performed in accordance with the appropriate version of the Declaration of Helsinki. Informed consent of the patients was obtained before analysis.

Elena B. Volokhina
Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands

Grethe Bergseth
Research Laboratory, Nordland Hospital, Bodø, Norway

Nicole C. A. J. van de Kar
Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands

Lambertus P. van den Heuvel
Department of Pediatric Nephrology, and Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Tom Eirik Mollnes
Research Laboratory, Nordland Hospital, Bodø, Norway

Department of Immunology, Oslo University Hospital, K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway

Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway

Response

Maternal and cord C5a in response to eculizumab

We appreciate the interest of Volokhina et al1 in our recent letter to the editor in Blood.2 Their data on measurement of C5a in human plasma in response to eculizumab adds to the scant literature on this topic. They raise 2 criticisms that we did not address in our original letter: (1) plasma C5a levels may be spuriously elevated due to cross-reactivity with other epitopes specific to the BD C5a enzyme-linked immunosorbent assay (ELISA) (BD Bioscience, San Jose, CA), and (2) eculizumab-C5 (E-C5) complexes may be the source of cross-reactivity.3 These are both important considerations.

Although the data were not included in our initial report, we also measured umbilical cord plasma levels of C5a in our patient with preeclampsia and hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome using the BD C5a ELISA. Umbilical cord plasma C5a levels were measured at 94.1 ng/mL (56% of maternal plasma levels). The umbilical cord plasma levels of C5a in 10 randomly selected severe preeclampsia cases not on eculizumab measured 19.3 ± 8.2 ng/mL (median, 58.8% of maternal levels). Similar cord C5a measurements were noted in 3 HELLP cases not on eculizumab (26.7 ± 9.5 ng/mL; median, 61.0% of maternal levels). In light of the findings of Volokhina et al, the higher levels of cord C5a detected in our preeclampsia/HELLP patient treated with eculizumab may reflect increased levels of E-C5 complex. The detection of E-C5 complex is an important consideration, because E-C5 complexes are capable of crossing the placenta4 and may also be deposited in the kidney.5 Hallstensen et al estimate that newborns carry 6% to 7% of the E-C5 complexes in their eculizumab-treated mothers with paroxysmal nocturnal hemoglobinuria.6 Nonetheless, it is also noted that the ratio of umbilical cord C5a to maternal C5a was similar between our preeclampsia/HELLP patient treated with eculizumab and our preeclampsia/HELLP cases not exposed to eculizumab. In addition, as we previously reported, baseline (pretreated) plasma C5a levels (measured by the BD C5a ELISA) in our case study were high compared with healthy pregnant controls and subjects with severe preeclampsia.2,5 Together, these data suggest that E-C5 complexes may not be the sole factor contributing to elevated maternal and cord C5a readings in the BD assay.

Although we have successfully used eculizumab to treat severe preeclampsia/HELLP syndrome7 and believe that it is a promising treatment of this condition, we feel that plasma C5a levels may be less helpful than other markers of complement activation.5,7,8 Cofeffi et al suggested that urinary C5a and sC5b-9 levels may be more useful in guiding response to eculizumab,5 and our published data

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>
Eculizumab treatment efficiently prevents C5 cleavage without C5a generation in vivo

Elena B. Volokhina, Grethe Bergseth, Nicole C. A. J. van de Kar, Lambertus P. van den Heuvel and Tom Eirik Mollnes