Comment on Hanslik et al, page 2091

aPTT in children receiving UFH: time for a change?

Riten Kumar1,2 and Sarah H. O’Brien1,2 1NATIONWIDE CHILDREN’S HOSPITAL; 2THE OHIO STATE UNIVERSITY COLLEGE OF MEDICINE

In this issue of *Blood*, Hanslik et al compare 2 dose protocols for unfractionated heparin in children undergoing cardiac catheterization and demonstrate poor agreement between the 3 assays (anti-Xa, activated partial thromboplastin time [aPTT], and activated clotting times [ACTs]) used to measure heparin’s anticoagulant effect.1

Unfractionated heparin (UFH) remains an important therapeutic modality for anticoagulation in children. Its short half-life and easy reversibility with protamine sulfate make it an attractive option in critically ill children. Although initially described as a screening tool for hemophilia, the aPTT is a global hemostatic assay that reflects the integrity of the intrinsic and common pathways of the in vitro coagulation cascade and is commonly used to monitor UFH. In a landmark publication in 1972, Basu et al2 demonstrated that the risk of recurrent thrombosis in adults receiving heparin could be significantly reduced by aiming for a 1.5 to 2.5 times prolongation of the aPTT. A subsequent cohort study by Andrew et al3 documented a 73% agreement between aPTT and anti-Xa activity in 52 children receiving UFH therapy ($r^2 = 0.51$), and the therapeutic range of 1.5 to 2.5 times baseline was extrapolated for children. Over time, however, it has become apparent that the aPTT is affected by several preanalytical, analytical, and biological variables, and current guidelines recommend that the therapeutic aPTT range corresponds to an anti-Xa of 0.35 to 0.7 U/mL.1 Recent studies have documented poor agreement between the 2 assays ($r^2: 0.08-0.27$), with the aPTT frequently overestimating the heparin effect compared with anti-Xa.5-7

In the current article, the authors report post hoc analysis on laboratory data collected during a parallel cohort, randomized, double-blinded controlled study comparing 2 dosing protocols of UFH to prevent thromboembolism in children undergoing cardiac catheterization (HEART CAT).1 The primary clinical outcomes of the study were previously published and did not demonstrate a significant difference in thrombosis or bleeding between high-dose and low-dose UFH.8 aPTT, anti-Xa, and ACTs were obtained at baseline and 30, 60, and 90 minutes after heparin bolus; in total, 492 blood samples were collected from 149 subjects. Although all 3 assays discriminated well between high-dose and low-dose UFH, there was poor correlation between the assays. Congruent with previous reports, the aPTT frequently overestimated the UFH effect reported by anti-Xa and was supratherapeutic for all measured time points in both protocols (see figure). In the high-dose arm (100-U/kg bolus followed by continuous infusion), the anti-Xa was supratherapeutic initially, but became therapeutic by 90 minutes. In the low-dose arm (50-U/kg bolus without continuous infusion), the anti-Xa was therapeutic initially but rapidly became subtherapeutic. The authors therefore suggest a 75-U/kg bolus in pediatric subjects undergoing cardiac catheterization procedures. They also conclude that the aPTT was overly sensitive to heparin effect in this cohort and suggest using anti-Xa, with the ACT recommended as a comparably lower threshold.
Comment on van Keimpema et al, page 2098

FOXP1 inhibits plasma cell differentiation

Kai-Michael Toellner
UNIVERSITY OF BIRMINGHAM

After antigen contact, B cells rapidly differentiate and cycle through several phenotypical intermediaries before entering 1 of 2 longer-lived stages, the memory B cell or the plasma cell. In this issue of *Blood*, van Keimpema et al identify a role for the forkhead transcription factor FOXP1 in inhibiting the very last differentiation stage: plasma cell differentiation.1 They show that FOXP1 directly represses several key regulators of plasma cell differentiation. Although FOXP1 is strongly expressed in naive B cells, it is lost as B cells enter germinal center differentiation.2 However, it is re-expressed in memory B cells where it correlates with immunoglobulin class switch recombination status, with immunoglobulin (Ig)G-switched memory B cells expressing lower levels of FOXP1. Interestingly, this correlates with a trait of IgG-switched memory B cells to be more likely to enter plasma cell differentiation3 (see figure).

The forkhead box or FOX proteins are a family of transcriptional regulators, typically displaying the forkhead motive, a 100-amino-acid protein motive involved in DNA binding. The original fork head protein was described in *Drosophila melanogaster* and is involved in regulating terminal differentiation.4 Immunologists are aware of the family mainly through FOXP3, the master regulator for regulatory T cells.5 Less has been published on FOXP1, which has been largely studied in connection with embryonic and brain development. Similar to other transcription factors, FOXP1 can act as a transcriptional inducer or repressor.6 Transcriptional regulation plays an important role in the development of lymphoma. Increased activities of genes that inhibit terminal plasma cell differentiation, eg, *Paired Box 5 (Pax5), B cell lymphoma 6 (Bcl6), Spi-B, or loss of function of Positive Regulatory Domain I (Prd1)*, the gene coding for BCL10–interacting MAGUK protein 1 (BLIMP1), are often associated with B-cell non-Hodgkin lymphomas. Similarly, translocation of *FoxP1* has been shown to be associated with poor prognosis in diffuse large B-cell lymphoma6 and other lymphomas.

REFERENCES

© 2015 by The American Society of Hematology
aPTT in children receiving UFH: time for a change?

Riten Kumar and Sarah H. O'Brien