To the editor:

Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenström macroglobulinemia: final analysis of a phase 2 study

Reports of long-term outcomes of therapies in Waldenström macroglobulinemia (WM) are particularly important given the protracted course of the disease. In a large phase 2 study in 72 patients, using contemporary criteria for diagnosis and initiation of therapy,\(^1,2\) primary therapy with dexamethasone, rituximab, and cyclophosphamide (DRC) was active with limited toxicity.\(^3\) DRC is one of the most commonly used regimens for symptomatic WM and is evaluated, with or without bortezomib, in the randomized European Consortium for Waldenström Macroglobulinemia (ECWM-I) study (NCT01788020). Herein we present outcomes after a minimum follow-up of 7 years (median 8, range 7 to 10 years), and this is one of the few studies in WM with long-term data. Patients were enrolled between November 2002 and April 2006. Inclusion required the presence of CD20\(^+\) lymphoplasmacytoid lymphoma involving the bone marrow, positive serum immunofixation for monoclonal IgM, and at least 1 of the consensus criteria for initiation of treatment.\(^2\) DRC consisted of six 21-day courses of dexamethasone 20 mg IV, followed by rituximab IV 375 mg/m\(^2\) and oral cyclophosphamide 100 mg/m\(^2\) twice daily (days 1 to 5). Patients without progressive disease were followed without treatment. Response was evaluated on an intention-to-treat basis per standard criteria.\(^4\) The cause of death was assessed prospectively by the treating physicians as either “WM-related” (ie, resulting from progressive disease, transformation to myelodysplastic syndrome [MDS] or diffuse large B-cell lymphoma [DLBCL], infections, or treatment-related complications), or “unrelated” (ie, died while WM was in remission, off treatment, resulting from causes such as stroke, myocardial infarction, or a second cancer, and without evidence of disease progression or relapse during this period). The characteristics of the patients, toxicity, and response have been published.\(^5\) On intent-to-treat, 83%
achieved a response (complete remission: 7%, partial remission: 67%, minor remission: 9%); 9% had stable and 8% experienced progressive disease. Median progression-free survival (PFS) was 35 months (95% confidence interval, 22 to 48 months); disease progression at 3 years was 45%, and unrelated death, without disease progression, was 12% (Figure 1). In comparison, median PFS after single-agent rituximab was 23 months. Other rituximab-containing regimens (such as bortezomib, dexamethasone, rituximab) were also associated with a median PFS of around 3 years; however, these included an additional toxicity profile and shorter follow-up. Bendamustine with rituximab was superior to R-CHOP (PFS 69 vs 28 months with less toxicity), however the numbers at each group were small and the follow-up was short.

Forty patients (56%) received second-line therapy (Figure 2). Median time to next treatment was 51 months. Among patients who received second-line treatment, 28 (70%) were retreated with a rituximab-based regimen with high response rates (82% achieved at least a minor response); 12 patients (30%) were treated with alkylating agents, fludarabine, or bortezomib (67% achieved at least a minor response). Thus in patients who have achieved a relatively long-lasting response with initial rituximab-based therapy, a similar regimen may be considered as a reasonable option at relapse.

Thirty-five patients (49%) have died: 20 (57%) were WM-related, and in 15 (43%) death was unrelated to WM (related to solid tumors in 8, [lung in 4, bladder in 1, melanoma in 1, gastric in 1, and pancreatic in 1], heart disease in 4, stroke in 2, and pancreatitis in 1). Secondary MDS and transformation to DLBCL occur in ~3% and ~10% of WM patients, respectively. However, only 1 developed MDS after he had received fludarabine, and 2 patients (2.7%) developed DLBCL (1 after exposure only to DRC and the other after multiple treatments, including nucleosides). The rate of nonhematologic tumors was higher than MDS/DLBCL; whether the incidence of solid tumors is higher than expected for this elderly population and if these are related to WM or therapy requires further investigation. Median OS is 95 months (95% confidence interval, 87-103) and 8-year OS is 47%. Accounting for unrelated deaths as a competing event, WM-related death at 8 years was 32% and WM-unrelated was 21%. The 8-year and estimated 10-year OS related to WM was 64% and 53%, respectively. Thus we prospectively documented that unrelated mortality has significant impact on the survival of WM patients. The 8-year OS per the international prognostic scoring system for WM was 100%, 55%, and 27% for low, intermediate, or high-risk disease, respectively (P = .005).

In conclusion, PFS after DRC is about 3 years, whereas retreatment is feasible. The OS after primary DRC was about 8 years, affected by the risk status; however, second nonhematologic cancers were observed and about one-fifth of patients died of unrelated causes.

Efstathios Kastritis
Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
Maria Gavriatopoulou
Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
Marie-Christine Kyrtsonis
First Department of of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
Maria Roussou
Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
Evdokia Hadjiharissi
Theageneion Cancer Center, Thessaloniki, Greece
Argyris Symeonidis
Department of Hematology, University of Patras School of Medicine, Patras, Greece
Panagiotis Repoussis
Metaxa Cancer Center, Piraeus, Greece
Evridiki Michalis
Department of Hematology, G. Genimatas Hospital, Athens, Greece
Sosana Delimpasi
School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece

Figure 2. Outcomes of patients who participated in the phase 2 study of the combination of DRC in previously untreated patients with symptomatic WM. PD, progressive disease; SD, stable disease.
The treatment of classical Hodgkin lymphoma (cHL) patients with refractory/relapsed disease remains a clinical challenge. To find a new therapeutic option for cHL, we investigated the preclinical activity of the repurposed drug aurano (AF). AF is an anti-inflammatory drug used for rheumatoid arthritis and is now considered a potential anti-cancer drug. AF, approved by the US Food and Drug Administration for clinical trials in chronic lymphocytic leukemia and in ovarian and lung cancer, seems to have application also in bacterial and parasitic infections as well as in HIV/AIDS.

With the goal of repurposing AF for refractory cHL, we demonstrated its antitumoral activity in in vitro and in vivo tumor models. AF inhibited proliferation (Figure 1A) and clonogenic growth (supplemental Figure 1A, available on the Blood Web site) of L-1236, L-428, KM-H2, HDLM-2, and L-540 cHL-derived cell lines with IC50 ranging from 0.7 to 1.5 μM (supplemental Table 1). AF was also active in L-540 gemcitabine-resistant and HDLM-2 brentuximab-resistant cells (Figure 1A; supplemental Table 1). AF induced cytotoxic effects by promoting apoptotic stimuli: it decreased the mitochondrial membrane potential (Figure 1B) and induced cyt-c release (Figure 1B), caspase 3 activation (supplemental Figure 1B) and DNA fragmentation (supplemental Figure 1C). AF reduced TrxR activity (Figure 1D) and caspase 3 activation (supplemental Figure 1B) and DNA fragmentation (supplemental Figure 1C). AF not only could exert a direct cytotoxic activity but also could counteract the survival signals from the microenvironment dependent on: (1) inflammatory cells expressing CD40L or CD30L; (2) epithelial cells expressing CD40L or CD30L; (3) Jagged1 expressed by endothelial, smooth muscle, and epithelial cells. In fact, AF inhibited nuclear factor κB (Figure 1F), TrxR activity (Figure 1D), and caspase 3 activation (supplemental Figure 1B).
Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenström macroglobulinemia: final analysis of a phase 2 study

Efstathios Kastritis, Maria Gavriatopoulou, Marie-Christine Kyrtsonis, Maria Roussou, Evdoxia Hadjiharissi, Argyris Symeonidis, Panagiotis Repoussis, Evridiki Michalis, Sosana Delimpasi, Konstantinos Tsatalas, Panagiotis Tsirigotis, Amalia Vassou, Elina Vervessou, Eirini Katodritou, Dimitra Gika, Evangelos Terpos and Meletios A. Dimopoulos

Updated information and services can be found at: http://www.bloodjournal.org/content/126/11/1392.full.html

Articles on similar topics can be found in the following Blood collections
 Lymphoid Neoplasia (2513 articles)

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml