in the BMT CTN 0302 study, where mycophenolate looked like the “winner” that it never was…

The bar is indeed high: preserve the graft-versus-malignancy effect, do not jeopardize immune recovery, and abolish GVHD. As for Don Quixote, we do not want our pursuit to be associated with his name anyway. Rather, we should side with and imitate the author, who ushered in a new literary era. New paradigms for GVHD prevention and treatment, anyone?

Conflict-of-interest disclosure: The author declares no competing financial interests.

REFERENCES

© 2014 by The American Society of Hematology

Not merely quiescent: telomeres in quiescent HSCs

Ayako Nakamura-Ishizu1,2 and Toshio Suda1,2

1National University of Singapore; 2Keio University

In this issue of Blood, Wang et al elegantly show that telomere shortening results in DNA damage that induces apoptosis and senescence in quiescent hematopoietic stem cells (HSCs).1

A

ltering the cell cycle and retaining a quiescent state protect cells from cell-intrinsic functional exhaustion and naturally produce extrinsic cellular insults.2 HSCs are thus maintained in cell cycle quiescence, enabling lifelong hematopoietic cell production.3,4 However, quiescence does not ensure that HSCs will be immortal. Organisinal aging is reflected on the cellular level as stem cell potentials of HSCs decline with age. The mechanisms of how aged HSCs are functionally defective have recently started to be uncovered.

HSCs exhibit accumulation of DNA damage induced by intrinsic and extrinsic hazards.5 Initially, it was postulated that acquisition of quiescence protected HSCs from genomic instability. Yet, recent studies indicate decreased expression of DNA damage repair pathway–associated genes in quiescent HSCs compared with cycling HSCs.6 Attenuation of the DNA damage repair pathway leads to the accumulation of DNA damage in aged quiescent HSCs, and such damage is repaired upon cycling. Aged quiescent HSCs display a slower rate to enter the cell cycle to proliferate and display a persistent replication stress postcycling.7 Mechanisms underlying HSC aging are thus linked to cell cycle status and cell cycle machinery. However, a quiescent state does not necessarily ensure protection from cellular insults and genetic instability.

Telomeres cap the ends of linear chromosomes, protecting chromosomes from degradation or fusion.8 Telomeres shorten with cell division and aging but are repaired by telomerase ribonucleoprotein complex and the shelterin complex.8 Telomerase is expressed in HSCs, and telomerase activity is essential for the maintenance of HSC potentials.9 Yet details of the mechanism underlying the effect are largely unknown. Wang et al profiled the gene expressions

Hematopoiesis & Stem Cells

Comment on Wang et al, page 3237
of HSCs and progenitor cells from third-generation Terc-deficient mice (G3mTerc−/−). They revealed that gene expression changes were confined to HSCs. More excitingly, the gene expression changes were further prominent in quiescent G3mTerc−/− HSCs rather than actively cycling HSCs. When G3mTerc−/− HSCs were stimulated to cycle, HSCs that remained quiescent significantly expressed elevated levels of senescence-associated (p16) and apoptosis-associated (Puma) genes. These data indicate that telomere shortening in quiescent HSCs activates a genetic program prior to cell cycle checkpoints, which eliminates damaged HSCs through senescence or apoptosis (see figure).

The current study indicates that genomic machinery regarding telomeres actively participates in determining the cell fate of HSCs even before they confront cell cycle checkpoints upon proliferation. Although it has been shown that DNA damage repair responses are attenuated in quiescent HSCs, it is still too early to conclude that quiescence is a detrimental state for the preservation of HSC functions. In fact, with regard to telomere-mediated responses, quiescent HSCs integrate a surveillance program so that damage is not propagated to HSC progeny. The current paper provokes the question of how telomere shortening and telomerase modulate effects on cell cycle entry. This will provide greater insight into the biology of HSC aging.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

REFERENCES

IMMUNOBIOLOGY

Comment on Romain et al, page 3241

Fc-optimized antibodies quickly pull the trigger

Christian Kellner and Matthias Peipp

CHRISTIAN-ALBRECHTS-UNIVERSITY KIEL

In this issue of *Blood*, Romain et al demonstrate that natural killer (NK) cell–mediated killing of tumor cells coated with the Fc-optimized CD33 antibody DL-E-HuM195 reveals a distinct kinetic profile.1 The presented work gives important novel insights into the mechanism of effector cell–mediated target cell killing triggered by Fc-engineered antibodies and explains how they achieve a higher antibody-dependent cell-mediated cytotoxicity (ADCC) potency than native immunoglobulin G1 (IgG1) antibodies. Using time-lapse imaging microscopy in nanowell grids (TIMING), the authors were able to demonstrate at the single-cell level that antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells.

Today, antibody therapy is an established treatment option in cancer therapy. Monoclonal antibodies such as rituximab, which targets the CD20 antigen on various B-cell malignancies, have significantly improved the clinical outcome of tumor patients. Unfortunately, not all patients can benefit from a generally well-tolerated antibody therapy. For example, antibody–based therapeutic approaches in acute myeloid leukemia (AML) using unconjugated monoclonal antibodies have not been clinically approved at the moment. CD33, a candidate antigen in targeting AML, is significantly expressed in about 85% to 90% of cases and is considered a promising target structure for developing effective antibody–based AML therapies. Lintuzumab (HuM195), a humanized CD33 antibody, had observable efficacy in patients with advanced AML, but
Not merely quiescent: telomeres in quiescent HSCs
Ayako Nakamura-Ishizu and Toshio Suda