The continued use of radiation alone for NLPHL is an accident of history and not the result of an evidence-based comparison. Clinicians should consider treating limited stage NLPHL the same as classical HL, especially given the available evidence that doing so appears to produce superior treatment outcomes.

Joseph M. Connors
BCCA Centre for Lymphoid Cancer, University of British Columbia, Vancouver, BC, Canada

Conflict-of-interest disclosure: The author declares no competing financial interests.

Correspondence: Joseph M. Connors, BCCA Centre for Lymphoid Cancer, University of British Columbia, 600 West 10th Ave, Vancouver, BC V5Z 4E8, Canada; e-mail: jconnors@bccancer.bc.ca.

References

© 2013 by The American Society of Hematology

To the editor:

Homozygosity by descent of a 3Mb chromosome 17 haplotype causes coinheritance of Glanzmann thrombasthenia and primary ciliary dyskinesia

Glanzmann thrombasthenia (GT) is an autosomal recessively inherited bleeding diathesis, and mutations within the genes (ITGA2B and ITGB3) that code for subunits αIIbβ3 integrin have been shown to be responsible for this disorder.1

The GT clinical phenotype can be modulated by a series of factors, acquired as well as inherited.2

We now report the coinheritance in 2 siblings of GT and primary ciliary dyskinesia (PCD). A 5-generation family history excluded consanguinity. Approval was obtained from the Ospedali Riuniti (Foggia, Italy) Institutional Review Board for these studies. Written informed consent was obtained from the parents in accordance with the Declaration of Helsinki.

The patients were a 9-year-old boy and his 6-year-old brother (Figure 1) who had mucocutaneous bleeding diathesis soon after birth. A diagnosis of GT was confirmed by complete platelet failure to aggregate in response to adenosine 5-diphosphate, epinephrine, collagen, and thrombin and lack of the αIIbβ3 platelet receptor in flow cytometry studies. In both patients, the presence of an opposite position of the internal organs (heart, stomach, spleen, liver, and gallbladder) and bronchiectasis allow for the diagnosis of PCD. In both of these patients, an atrial septal defect, a patent foramen ovale, and an ostium secundum (in the older and in the younger boy, respectively), was observed. In addition, sinus disease with recurrent infections gave rise to recurrent epistaxis, which needed the combined use of recombinant activated factor VII and anti-fiбринолитics, because of refractoriness to platelet transfusion due to the appearance of antibodies against platelet antigens. Both parents and the 14-year-old sister were asymptomatic.

Sequencing of ITGA2B and ITGB3 genes revealed the presence of a novel homozygous nonsense mutation within the ITGB3 gene (p.W264X, c.G33289A). Both parents were heterozygous, whereas the sister did not carry the mutation.

Clinical and instrumental information indicated the cosegregation of both diseases and suggested the contemporary inheritance of mutated alleles of different genes, raising the possibility of their linked germline transmission. Usually, because of crossing over, genes follow the expected inheritance patterns predicted by Mendel’s Theory of Independent Assortment, and their probability to be separated across generations depends on how far genes are.

PCD is inherited in an autosomal recessive manner and shows high locus heterogeneity, ~20 genes being known to be associated with the disease.3,10 One of them, CCDC103, is located in a 3Mb segment on the chromosome 17q, between the ITGA2B and ITGB3 genes. Thus, we explored whether the clinical phenotype observed in the family investigated might be ascribed to the inheritance of a chromosome 17q haplotype. In both patients, sequencing of the CCDC103 gene showed a homozygous missense mutation, p. H154P (c.A2826C), previously reported in families of Pakistan and German origin.7 Both parents and grandmothers were heterozygous, whereas the sister did not carry the mutation. To further confirm the pathogenetic role of a chromosome 17q haplotype inheritance, we analyzed informative gene polymorphisms. All alleles cosegregate (Figure 1), providing evidence of the existence of a 3Mb chromosome 17q haplotype, which carries both the ITGB3 p.W264X and the CCDC103 p.H154P gene mutation. The presence of an inherited haplotype and the absence of self-reported consanguinity strongly suggest a common ancestor and a founder effect of a rare haplotype.

To our knowledge, this paper is the first to describe coinheritance of GT with PCD, a hereditary disease that affects GT clinical phenotype by modulating bleeding risk because of the presence of sinusitis, bronchiectasis, and malformations needing surgical approaches, as atrial septal defects.

Giovanna D’Andrea
Genetica Medica, Università di Foggia, Foggia, Italy

Michele Schiavulli
Centro Regionale per le Emocoagulopatie, Azienda Ospedaliera Santonovo-Fasillipon, Naples, Italy
Figure 1. The genealogical chart of an Italian family with coinheritance of GT and PCD. Chest radiology images are shown. Below is an ideogram of the chromosome 17 and the 3Mb segment containing the ITGA2B, ITGB3, and CCDC103 genes (filled boxes). Genotypes of common and causative mutations (bold) are indicated, and the inherited causative haplotype is reported (asterisks).
Elvira Grandone
Unita' di Aterosclerosi e Trombosi, Scientific Institute for Research, Hospitalization and Health Care, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy

Maurizio Margaglione
Genetica Medica, Università di Foggia, Foggia, Italy

Contribution: G.D. performed experiments, collected and analyzed data; M.S. recruited patients, collected and interpreted clinical data, and contributed to and revised the manuscript; C.D. performed experiments and made the figures; R.S. revised the manuscript, and contributed to the analysis of the results; E. Guerra performed radiology studies and revised the manuscript; V.A.C.L. performed experiments and revised the manuscript; E. Grandone designed the study, interpreted the data, and wrote the draft and final manuscript; and M.M. designed and performed the research, collected, analyzed, and interpreted the data, and wrote the draft and final manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Maurizio Margaglione, Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, Foggia 71122 – Italy; e-mail: m.margaglione@unifg.it.

References

© 2013 by The American Society of Hematology
Homozygosity by descent of a 3Mb chromosome 17 haplotype causes coinheritance of Glanzmann thrombasthenia and primary ciliary dyskinesia

Giovanna D'Andrea, Michele Schiavulli, Claudia Dimatteo, Rosa Santacroce, Egidio Guerra, Vittoria A. C. Longo, Elvira Grandone and Maurizio Margaglione