I–specific antibodies are not involved in the inhibitory effects reported here.

In conclusion, we demonstrated that antigen-specific CD8 T-cell activation after cross-presentation of immune complexes by BMDCs is strongly reduced in the presence of therapeutic doses of IVIg. This observation extends our previous observations showing that antigen-specific CD4 T-cell activation is inhibited by IVIg both in vitro and in vivo. Altogether, these results suggest that not only CD4 but also CD8 T-cell activation should be considered as therapeutic targets in the development of potent substitutes to IVIg.

Acknowledgments: The authors thank Dominic Chabot for excellent technical assistance.

P.T. receives an Industrial Innovation PhD Scholarship from Fonds de Recherche du Québec–Nature et Technologies (FQRNT)/National Sciences and Engineering Research Council of Canada (NSERC).

Conflict of interest disclosure: The authors declare no competing financial interests.

References


To the editor:

Lack of association between KIR genes and acute lymphoblastic leukemia in children

In a recent report, Almalte et al described novel associations between childhood acute lymphoblastic leukemia (ALL) and killer immunoglobulin-like receptor (KIR) genes in a case-control study including mostly French-Canadian patients.1 The study was limited to the analysis of stimulatory KIR (KIR-S) and impressively, all of the 6 different KIR-S exhibited a strongly reduced frequency in the patient cohort. We performed a similar analysis in a cohort of childhood B-ALL (n = 185) and T-ALL (n = 33) patients of European origin (92% German, recruitment 1992-2012) from the pediatric oncology center in Düsseldorf, but also included inhibitory KIR, which enabled the identification of extended KIR genotypes. As shown in Figure 1A, none of the KIR-S genes exhibited a significant frequency deviation from our ethnically matched control cohort. Our control group exhibited comparable KIR-S frequencies to the French-Canadian control group from Almalte et al1 except for KIR2DS5, which was unusually high in the Canadian study also when compared with other white cohorts from France, Germany, or the United Kingdom (data available at www.allelefrequencies.net). Because the strongest association in that study was seen for KIR2DS2, we looked for the frequency of the inhibitory KIR2DL2, which is in strong linkage disequilibrium with KIR2DS2. Again no decreased frequency of KIR2DL2 was found in our ALL cohort. The data from Almalte et al also implicate that the frequency of group A KIR haplotypes, which are abundant in white populations and harbor only a single KIR-S, would be much higher in ALL patients. Again our analysis does not show any significant difference between patients and controls (Figure 1B).

Further analysis of telomeric and centromeric KIR haplotypes2 as well as the cumulative number of stimulatory KIR genes did not reveal any significant difference to the control cohort (data not shown).

Given the technical challenges associated with PCR-based KIR genotyping, which is due to the strong similarity between KIR genes and the increasing number of alleles, it is generally helpful to assess extended KIR genotypes when performing case-control studies. Because of the strong linkage disequilibrium between several pairs of KIR, the knowledge of KIR genotypes provides an important plausibility control for KIR typing results. Moreover, in our experience historic patient sample collections can be particularly challenging for KIR typing, leading to decreased amplification efficiency compared with high-quality control samples. Given the consistently decreased frequencies of all KIR-S genes in the Almalte et al study,1 it would be highly desirable to know inhibitory KIR gene frequencies in this cohort, which would help to understand how the distribution of KIR genotypes is affected. Unfortunately, PCR primers and amplification conditions used for KIR
typing were not specified. The lack of these data in the study by Almalte et al makes it difficult to assess the observed discrepancies between the 2 studies.

In summary, we could not confirm the association of KIR-S genes with the risk of childhood ALL in our cohort and would generally recommend the assessment of extended KIR genotypes when performing case-control studies.

Acknowledgments: The authors thank all parents who gave their consent to use the biologic material from their minors. They also thank Carlos Vilches (Inmunogeneética–HLA, Hospital University Puerta de Hierro, Madrid, Spain) for helpful comments and advice.

This work was supported by the Deutsche Krebshilfe e.V. (to M.U., R.M. and A.B.).

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Dr Markus Uhrberg, Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, Moorenstr 5, Düsseldorf, Germany 40225; e-mail: uhrberg@itz.uni-duesseldorf.de.
Response

Associations between activating KIR genes and childhood leukemia

We are surprised to know that Babor et al did not detect any significant differences in the frequencies of activating KIR genes between acute lymphoblastic leukemia (ALL) patients and healthy controls.\(^1\) Obviously, these results contradict those reported recently by us.\(^2\) Interestingly, the frequencies of these genes in controls are more or less comparable in both studies. Babor and colleagues mentioned technical challenges associated with PCR-based KIR genotyping due to strong similarities between KIR genes and their many alleles. They further note that because of the archived nature of patient samples, the quality of the DNA may be compromised and hence it may be difficult to amplify KIR genes. Therefore, the authors imply that this could be one reason for decreased KIR gene frequencies in our patient samples. We have experienced such difficulties in amplifying KIR genes in both patient and control samples with longer amplifications. Such difficulties were alleviated when smaller segments of the genes were amplified. All of our PCR reactions for the KIR genes amplified ≤ 300 bp bands. Furthermore, we have used the same genotyping methods to determine gene frequencies of activating KIR genes in other diseases (e.g., Crohn disease) and have found increased frequencies of several of the activating KIR genes in the patients compared with the controls (data not shown). We receive samples from both patients and controls for these studies from DNA banks. Furthermore, all of the patient and control DNA samples yielded bands in positive control reactions. Therefore, we do not believe that the decreased frequencies of activating KIR genes in leukemia patients are due to inherent unsuitability of our DNA samples for PCR-based amplifications. After receiving an invitation to respond to the letter by Babor et al, we regenotyped a subset of our patients and controls. Again, we found significantly decreased frequencies of all activating KIR genes in our cohorts. It is noteworthy that decreased frequencies of some activating KIR genes in ALL patients have been described.\(^3,4\)

The reasons for the discordant results in the 2 studies are not immediately apparent. However, we speculate that these differences may result from the use of different PCR primer sets. We would encourage Babor and colleagues to verify their results with our primer pairs. We can provide them or send them their exact sequences. We would also be willing to genotype our DNA samples (a subset or all) in our laboratory. Furthermore, it could also be possible that these associations may not be present in the German population. Literature is replete with examples where genetic associations with a disease in one population were not replicated in another.

Concerning inhibitory KIR genes in our ALL patients, we are in the process of genotyping them. It is premature to draw definitive conclusions. However, we can say with certainty that they are showing a trend opposite to that of activating genes. This trend also verifies the suitability of our DNA samples for PCR-based genotyping. Concerning KIR haplotypes, our results do suggest that B haplotypes reduce risk for ALL. However, we have not directly determined them in our patient and control samples.

Suzanne Samarani
Ste-Justine Hospital Research Center, Montreal, QC

Ali Ahmad
Ste-Justine Hospital Research Center, Montreal, QC

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Ali Ahmad, 3175 Cote Ste Catherine St, Justine Hospital Research Center, Montreal, QC H3T 1C5 Canada; e-mail: ali.ahmad@recherche-ste-justine.qc.ca.

References

Lack of association between KIR genes and acute lymphoblastic leukemia in children

Florian Babor, Angela Manser, Kathrin Schönberg, Jürgen Enczmann, Arndt Borkhardt, Roland Meisel and Markus Uhrberg

Updated information and services can be found at:
http://www.bloodjournal.org/content/120/13/2770.full.html

Articles on similar topics can be found in the following Blood collections
<a href="/content/by/section/Editorials">Editorials</a> (149 articles)
Pediatric Hematology (504 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml