High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas

Maria Raffaella Zocchi,1 Silvia Catellani,1 Paolo Canevalli,1 Sara Tavella,2 Anna Garuti,3 Barbara Villaggio,4 Annalisa Zunino,5 Marco Gobbi,6 Giulio Fraternali-Orcioni,7 Annalisa Kunkl,7 Jean-Louis Ravetti,7 Silvia Boero,8 Alessandra Musso,6 and Alessandro Poggi8

1Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy; 2Department of Oncology, Biology and Genetics, 3Laboratory of Cellular Therapies, Department of Internal Medicine Medical Specialties, 4Laboratory of Nephrology, Department of Internal Medicine, 5Laboratory of Mutagenesis, 6Clinical Hematology, 7Unit of Pathology, and 8Unit of Molecular Oncology and Angiogenesis, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino–IST, National Institute for Cancer Research, Genoa, Italy

Herein we describe that in classic Hodgkin lymphomas (cHL, n = 25) the lymph node (LN) stroma displayed in situ high levels of transcription and expression of the disulfide-isomerase ERp5 and of the disintegrin-metalloproteinase ADAM10, able to shed the ligands for NKG2D (NKG2D-L) from the cell membrane. These enzymes were detected both in LN mesenchymal stromal cells (MSCs) and in Reed-Sternberg (RS) cells; in addition, MIC-A and ULBP3 were present in culture supernatants of LN MSCs or RS cells. NKG2D-L–negative RS cells could not be killed by CD8αβ+ T or γδ+ T cells; tumor cell killing was partially restored by treating RS cells with valproic acid, which enhanced NKG2D-L surface expression. Upon coculture with LN MSCs, CD8αβ+ T and γδ+ T cells strongly reduced their cytolytic activity against NKG2D-L+ targets; this seems to be the result of TGF-β, present at the tumor site, produced in vitro by LN MSCs and able to down-regulate the expression of NKG2D on T lymphocytes. In addition, CD8αβ+ T and γδ+ T cells from the lymph nodes of cHL patients, cocultured in vitro with LN MSCs, underwent TGF-β–mediated down regulation of NKG2D. Thus, in cHL the tumor microenvironment is prone to inhibit the development of an efficient antitumor response. (Blood. 2012;119(6):1479-1489)

Introduction

It is now accepted that the so-called stress surveillance contributes to the anti–neoplastic immunity, both in solid tumors and hematologic malignancies, through the activation of the NKG2D receptor that recognizes NKG2D ligands (NKG2D-L) on cancer cells, including the MHC class-I related chain-A and -B (MIC-A/B) and the UL16-binding proteins 1-4 (ULBPs).1-5 These ligands are commonly expressed at very low levels or retained in the cytoplasm, in healthy tissues, but their transcription and surface expression are enhanced on viral infection or tumor transformation.5,6 Besides natural killer cells and CD8+ T lymphocytes, γδ T cells can recognize these molecules and activate an antitumor response in different cancers.10-17 In this regard, we have described that γδ T lymphocytes belonging to the Vγ9Vδ2 subset are expanded in patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphomas (NHLs), where they proliferate in response to tumor cells, provided they express NKG2D-L, exert cytotoxicity, and produce anti-neoplastic or pro-differentiating cytokines, such as TNF-α and IL-4.15,16 However, NKG2D-L can be shed by tumor cells and, in their soluble form, interact with NKG2D expressed by effector lymphocytes and hinder the recognition of tumor cells.18,19 Proteolytic cleavage of MIC-A has been shown to depend on the thiol isomerase ERp5 and the disintegrins and metalloproteinases ADAM10 and ADAM17, which are also able to cleave ULBPs.19,22 Overexpression of these enzymes has been reported in multiple myeloma and other tumors.19,22 In turn, soluble (s) NKG2D-L and cytokines produced at the tumor site can down-regulate the expression of the NKG2D receptor on effector lymphocytes, contributing to tumor escape from immunosurveillance.22-25 Indeed, the TGF-β has been shown to reduce the surface density of the NKG2D receptor on CD8+ T and NK cells, impairing their antitumor reactivity in cancer patients.24-26 Moreover, we and others reported that plasma levels of sNKG2D-L correlate with disease progression in multiple myeloma, CLL, NHL, and acute myeloid leukemias; in particular, among sNKG2D-L, both sMIC-A and sULBP2 have been shown as a prognostic marker for multiple myeloma and for the identification of early-stage CLL patients with risk of disease progression.14-16,20,21,27-28

In this paper, we studied 25 classic HL (cHL) and found that the tumor microenvironment is prone to inhibit the development of an antitumor response. This is mainly because of the release of soluble MIC-A and ULBP3 by lymph node mesenchymal stromal cells (LN MSCs) and Reed-Sternberg (RS) cells, which display high expression of ERp5 and ADAM10, and to the production of TGF-β by LN MSCs, leading to NKG2D down-regulation on effector lymphocytes.

Methods

Patients

Twenty-five patients were analyzed between January 2009 and December 2010, diagnosed with classic Hodgkin lymphoma (cHL, 15 nodular

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734.

© 2012 by The American Society of Hematology
Table 1. Characteristics of HL patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>45 (20-65)</td>
</tr>
<tr>
<td>Sex, M/F</td>
<td>11/14</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>15 (60%)</td>
</tr>
<tr>
<td>MC</td>
<td>10 (40%)</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Cervical</td>
<td>12</td>
</tr>
<tr>
<td>Axillary</td>
<td>5</td>
</tr>
<tr>
<td>Inguinal</td>
<td>8</td>
</tr>
<tr>
<td>Gene expression</td>
<td></td>
</tr>
<tr>
<td>PAX5</td>
<td>10</td>
</tr>
<tr>
<td>IRF4/MUM1</td>
<td>6</td>
</tr>
<tr>
<td>EBV-LMP1</td>
<td>4</td>
</tr>
</tbody>
</table>

Twenty-five patients with cHL, according to the WHO classification were analyzed. The EBV status of HL nodes was assessed by immunostaining fixed sections of diagnostic node with a mixture of antibodies against EBV-expressed latent membrane protein-1.

M indicates male; F, female; NS, nodular sclerosis, and MC, mixed cellularity.

mAbs and reagents

The FITC-conjugated or the PE-conjugated or allophycocyanin-conjugated (APC) anti–CD8 mAb, the APC or FITC-anti–CD3 mAb, the anti–CD15, the FITC-anti–IL-10 mAbs were from BD Biosciences PharMingen Europe. The anti–CD30 mAb was from Ventana Medical System, and the anti–HLA class-I W6/32 (IgG2a), the anti–SH2 (CD105, IgG1), the anti–SH3 (CD73a, IgG2b), the anti–SH4 (CD73b, IgG1), the anti–CD34 (IgG1), producing hybridomas were purchased from ATCC. The anti–prolyl-4-hydroxylase mAb (clone 5B5, IgG1) was purchased from Dako Italy. The anti–CD30 mAb was from Ventana Medical System, and the APC or FITC-anti–CD3 mAb, the anti-CD15, mAbs and reagents during surgical approaches and resulted free of neoplastic disease, were also studied.

Isolation and culture of LN MSCs and coculture with T cells

LN MSCs were obtained by culturing LN cell suspensions from cHL patients in 6-well plates (5 × 10⁶ cells/well) in MEM-alpha (GIBCO) complete medium. After 3 days, nonadherent cells were washed away and adherent cells were cultured for additional 7 days. LN MSCs expressed HLA-A, -I, -SH3/CD73a, -CD90, -SH2/CD105, 4-hydroxylation (PH4), collagen, vimentin, transglutaminase (TG; “ERp5”), “ERp5”, and MSCs and RS cells can be isolated from cHL: shedding of MICA and ULBP3), bone sialoprotein, osteopontin, SH3/CD73b, CD44, B1-integrin, ICAM1, CD73, CD8, Lglutamine phosphatase, not only CD45, CD31, CD33, CD34, CD32, CD2, CD14, CD14, ICAM2, ICAM3, CD80, CD86, CD83, and HLA-DR (not shown).

CD8αβT- and γδT-cell populations were obtained from heparinized blood of healthy donors. CD8αβT cells were separated from whole blood samples with the RosetteSep isolation kit for CD8+ T cells (StemCell Technologies) according to the manufacturer’s instructions. By applying this procedure, the starting CD8αβT cells were more than 98% pure (n = 15 experiments). To obtain γδ T cells, peripheral blood mononuclear cells were isolated by Ficoll Hypaque density gradient centrifugation of blood samples from the same donors. γδ T cells were purified with the Immunomax separation kit (Miltenyi Biotech) specific for γδT cells according to the manufacturer’s instructions. After this separation, γδT cells were always more than 96%. V61 and V62 peripheral T cells were separated from peripheral blood mononuclear cells using home-made anti-V61 (A13) or anti-V62 (BB3) mAbs and EasySep custom kit (Stem Cell Technologies) according to the manufacturer’s instructions. The purity of V61 or V62 T cell population was always more than 95%. All the cell populations were stimulated with 0.5 μg/mL of PHA in the presence of 10 ng/mL of IL-2 in 96U-bottomed microwells; after 15 days of culture, CD8αβT cells were always 99% to 100% (n = 15), and more than 98% of cells were γδ T cells (n = 15). CD8αβ or γδ T cells were immediately used in coculture experiments with LN MSCs. These cocultures were performed using a different ratio between LN MSCs and responder lymphocytes (1:10 to 1:80) and evaluated at different time points (from 12 hours to 8 days). In some experiments, γδT-15 was added (10 ng/mL), in the absence or presence of the anti–TGF-β mAbs (5 μg/mL).

Immunofluorescence and cytometric analysis

Immunofluorescence on cells isolated from lymph nodes or on cultured cells was performed with the various mAbs indicated above labeled with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes. Control aliquots were stained with AlexaFluor-labeled isotype-matched irrelevant mAbs. For intracytoplasmic staining, cells were washed with PBS, Na3 0.1% and FCS 0.5%, fixed (3% paraformaldehyde in PBS, 5 minutes at 4°C), and permeabilized (1% Nonidet-P40 in PBS, 5 minutes at 4°C). After washing, samples were stained with the indicated mAbs or polyclonal antibodies, for 12 minutes at 4°C and finally stained with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes. Control aliquots were stained with AlexaFluor-labeled isotype-matched irrelevant mAbs. For intracytoplasmic staining, cells were washed with PBS, Na3 0.1% and FCS 0.5%, fixed (3% paraformaldehyde in PBS, 5 minutes at 4°C), and permeabilized (1% Nonidet-P40 in PBS, 5 minutes at 4°C). After washing, samples were stained with the indicated mAbs or polyclonal antibodies, for 12 minutes at 4°C and finally stained with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes. Control aliquots were stained with AlexaFluor-labeled isotype-matched irrelevant mAbs. For intracytoplasmic staining, cells were washed with PBS, Na3 0.1% and FCS 0.5%, fixed (3% paraformaldehyde in PBS, 5 minutes at 4°C), and permeabilized (1% Nonidet-P40 in PBS, 5 minutes at 4°C). After washing, samples were stained with the indicated mAbs or polyclonal antibodies, for 12 minutes at 4°C and finally stained with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes. Control aliquots were stained with AlexaFluor-labeled isotype-matched irrelevant mAbs. For intracytoplasmic staining, cells were washed with PBS, Na3 0.1% and FCS 0.5%, fixed (3% paraformaldehyde in PBS, 5 minutes at 4°C), and permeabilized (1% Nonidet-P40 in PBS, 5 minutes at 4°C). After washing, samples were stained with the indicated mAbs or polyclonal antibodies, for 12 minutes at 4°C and finally stained with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes. Control aliquots were stained with AlexaFluor-labeled isotype-matched irrelevant mAbs. For intracytoplasmic staining, cells were washed with PBS, Na3 0.1% and FCS 0.5%, fixed (3% paraformaldehyde in PBS, 5 minutes at 4°C), and permeabilized (1% Nonidet-P40 in PBS, 5 minutes at 4°C). After washing, samples were stained with the indicated mAbs or polyclonal antibodies, for 12 minutes at 4°C and finally stained with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes. Control aliquots were stained with AlexaFluor-labeled isotype-matched irrelevant mAbs. For intracytoplasmic staining, cells were washed with PBS, Na3 0.1% and FCS 0.5%, fixed (3% paraformaldehyde in PBS, 5 minutes at 4°C), and permeabilized (1% Nonidet-P40 in PBS, 5 minutes at 4°C). After washing, samples were stained with the indicated mAbs or polyclonal antibodies, for 12 minutes at 4°C and finally stained with the fluorochrome AlexaFluor-488 (from now on indicated as FITC) or PE or AlexaFluor-647 contained in the Zenon Tricolor Labeling Kit for mouse IgG (Invitrogen), followed by mAbs to the indicated markers labeled with the appropriate fluorochromes.
Cytotoxicity assay

Cytolytic activity of CD8⁺ effector and γδ T cells was analyzed in a 4-hour ⁵¹Cr-release assay against the RS773 cell line obtained from the LN of a cHL, or the L-540, KM-H2, L-428, and HDLM-2 cell lines obtained from pleural effusions of cHL patients and purchased from DSMZ GmbH (Braunschweig), labeled with ⁵¹Cr, at an E:T ratio of 10:1, in V-bottomed microwells. A total of 100 µL of supernatant was measured in a γ-counter, and the percentage of ⁵¹Cr-specific release was calculated as described previously. Some experiments were done using as targets the RS773, the L-540, KM-H2, L-428, and HDLM-2 cell lines pretreated for 3 days with 2.5mM VPA or with 10 µM TGF-β. Some samples were processed as effector cells after coculture with LN MSCs.

Immunohistochemistry

Paraffin-embedded LN samples from 18 cHL patients (9 NS and 9 MC) and 6 normal LN, obtained under diagnostic procedures, were analyzed for the expression in situ of MICA, ULBPs, Erp5, ADAM10, and TG. Immunohistochemistry was performed on 4-µm-thick sections, deparaffinized, and treated with methanol 3% hydrogen peroxide in methanol for 10 minutes to quench endogenous peroxidase. Antigen retrieval was performed with sample incubation in Triton-X 100 0.1% for 10 minutes at room temperature for the rabbit polyclonal anti-PDIA6 (Erp5) or with boiling citrate buffer 10mM, pH 6, for the rabbit polyclonal anti-ADAM10, the anti-TG mAb, the anti-CD30, anti–MIC-A, and anti-ULBP3 mAbs. The various antibodies were added at 5 µg/mL concentration, and an isotopic unrelated antibody was used as negative control (Dako Denmark). A polymeric 2-step method (Supersensitive IHC Detection System, Biogenex) was used as a revelation system, according to the manufacturer’s instructions, using 3,3'-diaminobenzidine as chromogen. Then, the slides were counterstained with hematoxylin, cover-slipped, and analyzed under an IX70 microscope (Olympus Biosystem) equipped with a charged coupled device camera (Camedia 4040Zoom, Olympus with a 20× objective).¹⁶

LCM and RNA extraction

Paraffin-embedded sections (8-µ thick) of LN obtained from 24 cHL patients (15 NS and 9 MC) and 7 normal LN were fixed on PEN glass slides (MDS Analytical Technologies). Additional 4-µ-thick sections were stained with hematoxylin and eosin to appreciate morphology or used for immunohistochemistry. Then tissue sections were dried at room temperature under a chemical safety hood for 5 minutes, then immersed in 100%/95%/75% ethanol solution. Samples were then washed dried at room temperature. Some samples were processed as thick sections, deparaffinized, and stained with hematoxylin and eosin to appreciate morphology or used for immunohistochemistry. Then tissue sections were dried at room temperature. Some samples were processed as whole slides, and total RNA was extracted as described in the next section, whereas serial sections underwent laser capture microdissection (LCM). LCM was performed with the Veritas machine (Acturus Bioscience) to separate the stroma, identified also on the basis of TG staining, from the neoplastic fraction of each sample.³² RNA was extracted with the Paradise System (Acturus Bioscience) after incubation with proteinase K for 4 to 6 hours at 56°C. A DNase treatment step was included. RNA was diluted in 50 µL elution buffer, according to the manufacturer’s protocol and quantitated by NanoDrop Spectrophotometer (ND-1000 Cellbio) and by Qubit TM fluorometer (Invitrogen) using the Quant-it TM Assay Kit (Invitrogen).

cDNA RT and quantitative RT-PCR

cDNA synthesis was performed with random hexamers by the use of the High Capacity Archive Kit (Applied Biosystems). To verify quantitative RT-PCR efficiency, decreasing amounts (50 ng, 10 ng, and 0.1 ng) of normal RNA were used for CT titration.

The following primers and probes were purchased from Applied Biosystems: MICA-B (Hs00741286_m1), ULBP1 (Hs00360941_m1), ULBP2 (Hs00676090_m1), ULBP3 (Hs00225909_m1), ULBP4 (Hs01266421_m1), NKG2D (Hs00183683_m1), Erp5 (PDIA6, Hs00194922_m1), ADAM10 (Hs00153853_m1), TG (Hs00190278_m1), IL4 (Hs00174122_m1), IL10 (Hs00961619_m1), IL-15 (Hs01003716_m1), and TGF-β (Hs00998130_m1). Quantitative RT-PCR was performed on the 7900HT FastRT-PCR system (Applied Biosystems) with the fluorescent TaqMan method. mRNAs were normalized to RPLP0 as a control gene and referred to a standard curve (Ipsogen). After subtracting the threshold cycle (Ct) value for RPLP0 from the Ct values of the target genes, results were expressed as ΔΔCt.⁴²,³³

Statistical analysis

Data are presented as mean ± SD. Statistical analysis was performed using ANOVA for repeated measures, calculating the F ratio and, when corrected, applying the Bonferroni-Dunnett test with a α = 0.05. The cut-off value of significance was .01.

Results

Low NKG2D-L expression in cHL showing in situ high levels of Erp5 and ADAM10

Twenty-five classic HL (cHL, 15 NS and 10 MC, Table 1) were studied for the expression of NKG2D-L. First, quantitative RT-PCR on RNA extracted from the whole LN sections, showed that MICA-B and ULBP3 transcripts were expressed in both NS and MC cHL, at variance with ULBP1, MIC-A, and ULBP4 (Figure 1A); these 2 NKG2D-L have recently been reported to activate γδ T cells and determine their anti-leukemia cytolytic activity.³⁵,³⁶ Of note, a high expression of the transcripts for both disulfide isomerase Erp5 and metalloproteinase ADAM10 could be detected in all cHLs (Figure 1A). At variance, we did not find overexpression of ADAM17 (not shown), whose catalytic domain is related to that of ADAM10, and it is also involved in NKG2D-L shedding.³² Then, molecular analysis was performed on the stromal (S) or parenchymal (P) microdissected areas of serial LN sections that underwent LCM on the basis of the localization of TG as a marker of stromal cells³⁷; indeed, in both NS and MC cHL, stromal areas could be clearly detected (Figure 1Biv, iv). Quantitative RT-PCR of microdissected samples revealed that MICA-B and ULBP3 transcripts were detectable in samples derived from stromal areas, defined also by the presence of TG transcripts, at higher levels than in parenchymal fractions, both in NS and in MC cHL; likewise, Erp5 and ADAM10 enzymes were more evident in the stromal samples, although present at significant levels in the parenchyma as well (Figure 1C). Little expression, not exceeding that of housekeeping gene, of either NKG2D-L or Erp5 and ADAM10 enzymes, was detected in healthy LN (supplemental Figure 1A, available on the Blood Web site; see the Supplemental Materials link at the top of the online article).

As for the expression of the proteins in situ, we found that, despite their considerable levels of transcription, MICA-B and ULBP3 were barely detectable in the LN sections of the cHL studied (Figure 1Di-iiv) shows a representative NS case of 11 NS and 9 MC analyzed). In turn, both the disulfide isomerase Erp5 (Figure 1Di) and the metalloproteinase ADAM10 (Figure 1Dii) were present in the stromal areas of the same LN sample. Of note, the 2 enzymes were also evident in RS cells (Figure 1Eiii-iv, respectively), identified in a representative MC case of cHL (Figure 1E) by morphologic characteristics and CD30 staining (Figure 1Eiiii).
LN MSCs and RS cells can be isolated from cHL: shedding of MIC-A and ULBP3

**LN MSCs were obtained by culturing LN cell suspensions from cHL patients (n = 8, 6 NS, 2 MC). LN MSCs expressed HLA-I, SH3/CD73a, SH4/CD73b, SH2/CD105, PH4, collagen, vimentin, TG (Figure 2A), bone sialoprotein, osteopontin, CD44, β1-integrin/CD29, ICAM1/CD54, alkaline phosphatase, but not CD45, CD31, CD34, CD33, CD32, CD16, CD14, ICAM2, ICAM3, CD80, CD86, CD83, and HLA-DR (not shown). None of the NKG2D-L was expressed at the surface of LN MSCs, except ULBP3 (Figure 2Bi-ii), whereas all NKG2D-L could be clearly detected in the cytoplasm (Figure 2Biii-iv), where also ERp5 and ADAM10 were found at high levels (Figure 2Ciii-iv). Of note, the soluble forms of MIC-A and ULBP3 were detected in the supernatant of cultured LN MSCs (Figure 2D). In one case of cHL, we could isolate and culture also neoplastic cells with some phenotypic characteristics of RS cells. The karyotype of these cells is: 49,XY+5,+9,+12,+13×2,−17,−20(1). As shown in Figure 3A, these cells were mostly CD30 (70%), and a fraction coexpressed the CD15 molecules, as described for RS cells. The NKG2D-L ligands were not detectable at the surface of RS773 cells by immunofluorescence (Figure 3Bi), and ULBPs 1 to 4 were retained in the cytoplasm (Figure 3Bii); on the other hand, they showed detectable at the cell surface (Figure 3Ci). These cells were kept in culture as a cell line named RS773 and used for further experiments. Because NKG2D-L surface expression can be induced by ATRA8,15,27 or VPA27,38,39 we checked MIC-A and ULBP3s 1 to 4 by immunofluorescence after in vitro exposure of RS773 cells to 10 μM ATRA or 2.5 mM VPA. As shown in Figure 3D, 2.5 mM VPA could induce MIC-A (Figure 3Dii) and ULBP3s (Figure 3Diii) at the surface of RS773, at variance with ATRA that did not exert any effect on this cell line (not shown). Cultured RS773 could release both sMIC-A and sULBP3; the shedding of these molecules was not significantly affected by treatment with VPA (Figure 3Div).

Taken together, these results indicate that the low expression of transmembrane NKG2D-L and high levels of their soluble form may be the result of the presence of the disulfide isomerase ERp5 and the disintegrin-metalloproinase ADAM10 in LN MSCs and/or RS cells.
Impaired recognition of lymphoma cells: effect of coculture of T lymphocytes with LN MSCs

We next investigated the role of LN MSCs in the modulation of lymphoma cell recognition by effector T lymphocytes. To this aim, CD8⁺/H11001/H9251/H9252 or CD9/H9253/H9254 T lymphocytes, either V₁/H9254 or V₂, were used as effector cells against RS773, L-540, KM-H2, L-428, and HDLM-2 Hodgkin cell lines in a cytotoxicity assay. First, CD8⁺/H11001/H9251/H9252 or CD9/H9253/H9254 T lymphocyte-mediated killing of RS773 cells that do not bear NKG2D-L (Figure 3B) and do not bind the NKG2D soluble receptor (NKG2DFc, Figure 4Ai) is low even at high E:T ratios (10:1, Figure 4Ai), undetectable at lower E:T ratio as 5:1 or 2:1 (not shown); similar results were obtained with the KM-H2 cell line (Figure 4Bi) that expresses very low levels of ULBP3 (supplemental Figure 2A) and a barely detectable binding of the NKG2D Fc soluble receptor (Figure 4Bi). A higher degree of cytotoxicity was observed when RS773, or the KM-H2 cell line,
pretreated with VPA, thus expressing ULBPs and binding the NKG2D receptor (Figure 4Ci,Di), was used as a target (Figure 4Cii,Dii). In all cases, blocking of NKG2D at the surface of T cells with a specific mAb strongly reduced their cytolytic activity (Figure 4Aii-Dii). Interestingly, on coculture with LN MSCs, CD8+ T lymphocytes strongly reduced their capability of killing either RS773 or KM-H2 cell lines (Figure 4E-F), even if the targets underwent VPA treatment, thus increasing NKG2D-L expression (Figure 3Diii; supplemental Figure 2A-B) and reactivity with the NKG2D receptor (Figure 4Ci vs Figure 4Ai; and Figure 4Di vs Figure 4Bi); this inhibitory effect exerted by LN MSCs was only partially prevented when cocultures were performed in the presence of the soluble NKG2D Fc, to neutralize the sMIC-A and/or sULBP3 released by LN MSC, or with an anti–TGF-β mAb to prevent down-regulation of NKG2D expression (Figures 4E-F and 5). Similar results were obtained with all the cHL cell lines or using T lymphocytes as effector cells (not shown). Supplemental Figure 2 shows induction of NKG2D ligands by 2.5mM VPA (supplemental Figure 2A) and the cytoplasmic expression of ERp5 and ADAM 10 (supplemental Figure 2C) on KM-H2 cell line. Supplemental Figure 2B,Cii shows the same results as the mean ± SD from the 4 cHL cell lines.

TGF-β produced by LN MSCs from HL down-regulates NKG2D expression on effector cells

Because TGF-β is known to down-regulate the expression of NKG2D receptor at the cell surface,24-26 we addressed the question of whether this might occur also in the microenvironment of cHL, thus contributing, together with the release of soluble NKG2D-L, to the impairment of lymphoma cell killing. Interestingly, the up-regulation of NKG2D expression induced by IL-15 in vitro was strongly inhibited by coculture of CD8+ T lymphocytes with LN MSCs (Figure 5Ai-ii); this down-regulation was observed at 24 hours as mRNA (Figure 5B) and, starting from day 3 of culture at the protein level (Figure 5Ci-ii), mimicked by exposure of T cells to purified TGF-β (not shown) and prevented by an anti–TGF-β mAb added to the cocultures (Figure 5Ai-ii,B). Along this line, TGF-β was detected in the cytoplasm of cultured LN MSCs (Figure 5Ei) and measured in their supernatants (Figure 5Eii).
Of note, TGF-β was transcribed at high levels at the tumor site in all cHL tested, mainly in the stromal microdissected areas, where also IL-15 transcripts were detectable (Figure 6Ai for the whole sample and Aii for microdissected sections); in turn, the parenchymal areas were enriched in IL-10 transcripts (Figure 6Aii). No expression of IL-4, which we described in NHL, was found in cHL (Figure 6Ai-i-ii). Then, lymphocytes isolated from cHL LN specimens were evaluated for NKG2D transcription (by quantitative RT-PCR; Figure 6B) or expression by indirect immunofluorescence (Figure 6C-D), either freshly isolated (Figure 6Ci) or cultured for 6 days with IL-15 (Figure 6Cii) or on coculture with LN MSCs, in the presence of IL-15 (Figure 6Ciii) and in the presence of IL-15 and of an anti-TGF-β mAb (Figure 6Civ). Figure 6D shows NKG2D intensity of expression (MFI arbitrary units) in CD8+ T lymphocytes (Figure 6Di) cocultured with LN MSCs in the absence or presence of IL-15 or of an anti-TGF-β mAb as the mean ± SD from 6 experiments performed with 6 different LN MSCs.

We found that NKG2D was up-regulated in culture by IL-15 on CD8+ T lymphocytes, identified by an APC-conjugated anti-CD8 mAb, and this up-regulation was prevented when the anti-TGF-β mAb was added to the cultures (Figure 6Civ,Di). Similar results were obtained analyzing NKG2D expression on V1 or V2 T cells from the same tissue samples. It is of interest that the intensity of NKG2D expression, measured as MFI arbitrary units, was higher in CD8+ T lymphocytes isolated from 3 healthy LN (MFI: 58 ± 5 arbitrary units), than in CD8+ T cells from cHL LN (MFI: 41 ± 6 arbitrary units), thus further supporting that NKG2D receptor may be down-regulated in the cHL microenvironment.
Discussion

It is now accepted that ectopic or enhanced expression of NKG2D-L on cancer cells renders them susceptible to an anti–tumor immune response in vitro and in vivo.\(^1^\)\(^-^\)\(^5^\) In hematologic malignancies, there are several evidences supporting that both \(\gamma^\delta\) T cells and \(\alpha\beta\) T cells act as anti–leukemic effectors using the NKG2D-NKG2D-L recognition.\(^2^\)\(^-^\)\(^1^\(^6^\) Nevertheless, in cHL, the infiltrating T-cell population seems to be committed toward a regulatory, rather than an effector, function.\(^4^\(^0^\)

In this paper, we describe that in cHL the microenvironment may contribute to tumor escape from the immune system in 2 ways: (1) through a reduction of NKG2D-L expression at the surface of lymphoma cell, together with enhanced release of their soluble form; and (2) by the mean of cytokines able to down-regulate NKG2D receptor on effector lymphocytes and impair tumor cell recognition. Indeed, in all cHL analyzed, the LN stroma displayed, in situ, high levels of transcription of the disulfide isomerase Erp5 and of the disintegrin-metalloproteinase ADAM10. These enzymes, which are able to shed all NKG2D ligands from the cell membrane,\(^2^\(^0^\)\(^-^\)\(^2^\(^2^\) were also detected as proteins, both in the stromal areas and in RS tumor cells in the LN of cHL patients and were apparently active in cultured LN MSCs, as well as in RS cells, as soluble MIC-A and ULBP3 were present in culture supernatants, but missing or expressed at very low levels on the cell surface. It is to be noted that sNKG2D-L interfere with the binding of lymphocyte NKG2D receptor to their membrane-bound form on tumor cells; moreover, RS cells (RS773 cell line), and all the cHL cell lines tested, which are negative for NKG2D-L, could not be recognized and killed by CD8\(^+\) \(\alpha\beta\) and \(\gamma^\delta\) T cells. Interestingly, tumor cell recognition and killing were partially restored by treating RS773 cells, or the other cHL cell lines, with VPA that enhanced NKG2D-L transcription, conceivably to levels high
Figure 6. TGF-β is expressed in the cHL microenvironment. (A) Quantitative RT-PCR for TGF-β, IL-4, IL-10, and TG was performed with the specific primers and probes on RNA extracted from whole LN sections (8 μm, A) or on stromal (S) or parenchymal (P) microdissected areas of serial sections (n = 20 cHL: 11 NS and 9 MC) that underwent LCM on the basis of the localization of TG (A). After subtracting the Ct value for RPLP0 from the Ct values of the target genes, results were expressed as ΔCt. Data are the mean ± SD from 14 NS samples (black columns) and 9 MC samples (gray columns in A).

(B) Quantitative RT-PCR for NKG2D was performed with the specific primers and probes on RNA extracted from CD8+ T cells (dark gray columns) and γδ T cells (light gray columns) isolated from LN, after 24 hours or culture without or with IL-15 (10 ng/mL), in the presence or absence of LN MSCs, anti–TGF-β mAb (5 μg/mL), as indicated. Data are mean ± SD from 3 experiments with CD8+ T cells (A) or 3 with γδ T cells. *P < .001 versus experiments done in the absence of LN MSCs and IL-15. **P < .001 versus experiments in the presence of IL-15. ***P < .001 versus experiments in the presence of IL-15 and LN MSCs. (C) Lymphocytes isolated from 6 HL LN specimens were evaluated for NKG2D expression by indirect immunofluorescence, either freshly isolated (Ci) or cultured for 6 days with IL-15 (10 ng/mL, Bii) or on coculture with LN MSCs, in the presence of IL-15 (Cii) and in the presence of IL-15 and of an anti–TGF-β mAb (5 μg/mL) added to the cocultures (Civ). NKG2D was evidenced by a specific mAb followed by PE-GAM, whereas CD8+ cells were identified by an APC-conjugated anti–CD8 mAb (C-Di), whereas γδ T cells were detected with a combination of anti-Vα1 and anti-Vβ2 AlexaFluor-647-conjugated mAbs (Dii). Samples were run on a CyAnADP flow cytometer, and results are expressed as log mean red fluorescence intensity (x-axis MF1, a.u.) versus log mean far red fluorescence intensity (for both APC and AlexaFluor-647, y-axis MF1, a.u.), or as MF1 (a.u.) (D). Data are mean ± SD from 6 different experiments with CD8+ cells (Di) or γδ T cells (Dii) and LN MSCs from 6 different HLs. *P < .001 versus experiments done in the absence of IL-15, LN MSCs, or anti–TGF-β. **P < .001 versus experiments in the presence of IL-15 and γδ T cells. ***P < .001 versus experiments in the presence of IL-15 and LN MSCs. All results were determined on CD3+ gated T cells after simultaneous staining with anti-CD3 mAb (JT3A, IgG2a) and FITC-GAM.
immunosuppressive cytokines, such as TGF-β and IL-10, produced by stromal cells and infiltrating lymphocytes, might lead to down-regulation of NKG2D receptor, impaired NKG2D-L binding, and tumor cell killing.

All these findings may have both prognostic and therapeutic implications. Indeed, plasma levels of sNKG2D-L correlate with disease progression in different hematologic malignancies, such as in multiple myeloma, CLL, NHL, and acute myeloid leukemias; in particular, among sNKG2D-L, both sMIC-A and sULBP2 have been shown as a prognostic marker for multiple myeloma and for the identification of early-stage CLL patients with risk of disease progression.4-16,22,28 In turn, expression of membrane-bound NKG2D-L by tumor cells might be up-regulated by drugs, such as ATRA or VPA,27,31 or, as recently reported, by proteasome inhibitors,43 all already approved for the treatment of hematologic malignancies. In addition, a bispecific ULBP2-BB4 protein targeting NKG2D on cytotoxic lymphocytes and CD138 on myeloma cells has been recently shown to prevent tumor cell growth in nude mice.44 Enhancement of NKG2D-mediated anti–tumor immune response by RNA interference targeting TGF-β has been reported to inhibit tumorigenicity in vivo in an animal model.45 It of interest that also prevention of NKG2D-L release is now proposed as a potential therapeutic target: these therapies would include blocking of ERp5-binding domain on MIC-A, or inhibition of ERp5 or ADAM10 enzymatic activity.36-48

In conclusion, selective modulation of NKG2D receptor expression and control of the enzymatic regulation of the balance between soluble and membrane-bound NKG2D-L may provide an additional opportunity to potentiate anticancer therapy.

References

mevalonate biosynthetic pathway in the regulation of bone marrow mesenchymal stromal cell-mediated effects on T-cell proliferation and B-cell survival. Haematologica. 2011;96(1):16-23.

High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas

Maria Raffaella Zocchi, Silvia Catellani, Paolo Canevali, Sara Tavella, Anna Garuti, Barbara Villaggio, Annalisa Zunino, Marco Gobbi, Giulio Fraternali-Orcioni, Annalisa Kunkl, Jean-Louis Ravetti, Silvia Maria Raffaella Zocchi, Silvia Catellani, Paolo Canevali, Sara Tavella, Anna Garuti, Barbara Villaggio, Annalisa Zunino, Marco Gobbi, Giulio Fraternali-Orcioni, Annalisa Kunkl, Jean-Louis Ravetti, Silvia Boero, Alessandra Musso and Alessandro Poggi

Updated information and services can be found at:
http://www.bloodjournal.org/content/119/6/1479.full.html

Articles on similar topics can be found in the following Blood collections
 Immunobiology (5467 articles)
 Lymphoid Neoplasia (2513 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml