to further studies that will address this issue.

Yuri Souwer
Department of Cell Biology and Histology,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

Jelle de Wit
Department of Immunopathology,
Sanquin Research and Landsteiner Laboratory,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

Femke J. M. Muller
Department of Cell Biology and Histology,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

Hanny Klaasse Bos
Department of Immunopathology,
Sanquin Research and Landsteiner Laboratory,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

Tineke Jongerius
Department of Cell Biology and Histology,
Sanquin Research and Landsteiner Laboratory,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

†Marien L. Kapsenberg
Department of Cell Biology and Histology,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

†Esther C. de Jong
Department of Cell Biology and Histology,
Academic Medical Center, University of Amsterdam,
Amsterdam, The Netherlands

To the editor:

Genomic loss of patient-specific HLA in acute myeloid leukemia relapse after well-matched unrelated donor HSCT

Allogeneic hematopoietic stem cell transplantation (HSCT) can grant long-term control and cure of acute myeloid leukemia (AML) thanks to the antitumor effect of the transplanted immune system. Still, relapse remains an open issue: in the haploidentical setting, we and others demonstrated that more than one-third of post-transplantation relapses are due to the de novo genomic loss of patient-specific HLA in leukemic blasts, which favors immune evasion from donor T cells.1,2 Although highly relevant in the haploidentical context, HLA loss has been poorly assessed after matched unrelated donor (MUD) HSCT,3 which is 10 times more frequent in clinical practice.4

Here we report on a 36-year-old woman with normal karyotype AML, positive for the FLT3 internal tandem duplication (ITD) at diagnosis (clinical course in Figure 1A). The patient achieved complete remission after standard induction and 2 courses of consolidation chemotherapy, followed by myeloablative HSCT from a MUD (10/12 HLA matched, donor 1 in Figure 1B). Disease relapse occurred after 10 months, and was controlled for more than 2 years by salvage chemotherapy followed by serial donor lymphocyte infusions (DLIs). Thereafter, a second relapse occurred, requiring 2 cycles of chemotherapy and a second allogeneic HSCT from a different MUD (9/12 and 11/12 HLA matched with the patient and the first donor, respectively, donor 2 in Figure 1B). After 6 months from the second HSCT, a third relapse occurred (boxed in gray in Figure 1A). Interestingly, this time leukemia resulted negative for the FLT3-ITD mutation, prompting further investigation.

The authors declare no competing financial interests.

Correspondence: S. Marieke van Ham, Sanquin Research, Department of Immunopathology, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands; e-mail: m.vanham@sanquin.nl.

References

From www.bloodjournal.org by guest on September 7, 2017. For personal use only.
Because T cells from the current donor are ineffective against leukemic cells that have lost the mismatched HLA, we proposed to our patient a third HSCT from her mother, sharing the haplotype that had been lost by UPD and therefore fully HLA-mismatched against the relapsing leukemia (donor 3 in Figure 1B). Unfortunately, the patient died in aplasia of transplant-related toxicity.

Our report demonstrates that immune escape by genomic HLA loss can occur not only in the haploidentical context, but also in leukemia relapses after well-matched unrelated donor HSCT. Further studies are warranted to address the frequency of this phenomenon; still, we would already encourage the use of HLA molecular typing in AML relapses also after MUD HSCT, to avoid the toxicity of inefficacious DLIs. Ultimately, novel diagnostic and therapeutic tools will be needed for early detection and targeted treatment of these peculiar variants of posttransplantation AML relapse.

Cristina Toffalori
Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Irene Cavattoni
Hematology Division, Azienda Sanitaria dell’Alto Adige, Bolzano, Italy

Sara Deola
Hematology Division, Azienda Sanitaria dell’Alto Adige, Bolzano, Italy

Sara Mastaglio
Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Fabio Giglio
Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Benedetta Mazzi
Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Andrea Assanelli
Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Jacopo Peccatori
Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Claudio Bordignon
MoMed S.p.A., Universita’ Vita-Salute San Raffaele, San Raffaele Scientific Institute, Milano, Italy

Chiara Bonini
Experimental Hematology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Program of Bio-Immunotherapy of Cancer, San Raffaele Scientific Institute, Milano, Italy

Sergio Cortelazzo
Hematology Division, Azienda Sanitaria dell’Alto Adige, Bolzano, Italy

Fabio Ciceri
Hematology and Bone Marrow Transplantation Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy

Figure 1. Clinical, immunogenetic, and molecular evidence of HLA loss at relapse after MUD HSCT. (A) Clinical course of the patient: histogram bars represent the percentage of leukemic blasts in the bone marrow of the patient at different time points during the posttransplantation follow-up. Boxed in gray is the disease relapse that occurred after the second MUD HSCT, when leukemic blasts were purified by fluorescence-activated cell sorting for further molecular analyses. (B) Genomic HLA typing of the patient before HSCT (and of AML blasts at diagnosis), of the 2 MUDs (donors 1 and 2), of the leukemic blasts purified at relapse after the second MUD HSCT (month 54, boxed in gray in panel A), and of the patient’s mother (donor 3). HLA alleles mismatched between donors and patient are shown in bold italics. Homozygosity for HLA-DPB1*04:01 for donor 2 was inferred from univocal genomic typing. (C) Single nucleotide polymorphism (SNP) profile of chromosome 6 from purified AML blasts harvested at diagnosis (top dot plots) and at relapse after the second MUD HSCT (bottom dot plots), analyzed using the Illumina Human660W-Quad BeadChip. Top and bottom plots show the B allele frequency and the LogR ratio, indicating zygosity and gene copy numbers of each SNP, respectively. Note de novo acquired UPD of leukemic blasts at relapse in a 40-Mb region of chromosome 6p encompassing HLA (evidenced in gray).
Katharina Fleischhauer
Unit of Molecular and Functional Immunogenetics,
Division of Regenerative Medicine, Stem Cells and Gene Therapy,
San Raffaele Scientific Institute,
Milano, Italy

Luca Vago
Hematology and Bone Marrow Transplantation Unit,
Unit of Molecular and Functional Immunogenetics,
Division of Regenerative Medicine, Stem Cells and Gene Therapy,
San Raffaele Scientific Institute,
Milano, Italy

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Acknowledgements: This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) IG 12042, by the Italian Ministry of Health RF-FSR-2008-1202848, and by the Cariplo Foundation 2009-2665.

References

Approval was obtained from the San Raffaele Scientific Institute review board for this study. Informed consent was provided in accordance with the Declaration of Helsinki.

Acknowledgements: This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) IG 12042, by the Italian Ministry of Health RF-FSR-2008-1202848, and by the Cariplo Foundation 2009-2665.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Dr Katharina Fleischhauer, Unit of Molecular and Functional Immunogenetics, San Raffaele Scientific Institute, via Olgettina 60, Milano, Italy; e-mail: fleischhauer.katharina@hsr.it.
Genomic loss of patient-specific HLA in acute myeloid leukemia relapse after well-matched unrelated donor HSCT

Cristina Toffalori, Irene Cavattoni, Sara Deola, Sara Mastaglio, Fabio Giglio, Benedetta Mazzi, Andrea Assanelli, Jacopo Peccatori, Claudio Bordignon, Chiara Bonini, Sergio Cortelazzo, Fabio Ciceri, Katharina Fleischhauer and Luca Vago

Updated information and services can be found at:
http://www.bloodjournal.org/content/119/20/4813.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml