Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSP T lymphocytes

Gildas Belrose,1 Antoine Gross,2 Stéphane Olindo,3 Agnès Lézin,1 Maryvonne Dueymes,1 Isabelle Komla-Soukha,1 Didier Smadja,9 Yuetso Tanaka,4 Luc Willems,5 Jean-Michel Mesnard,6 Jean-Marie Peloponese Jr,2 and Raymond Césaire1

1Laboratoire de Virologie–Immunologie, EA 4537, Centre Hospitalier Universitaire de Fort-de-France, Fort-de-France, Martinique, France; 2Centre d’Études d’Agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5236, Université Montpellier 1, Université Montpellier 2, Montpellier, France; 3Service de Neurologie, EA 4537, Centre Hospitalier Universitaire de Fort-de-France, Fort-de-France, Martinique, France; 4Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; and 5Cellular and Molecular Biology, Agro-Bio Tech, Gembloux, Belgium

A determinant of human T-lymphotropic virus-1 (HTLV-1)–associated myelopathy/tropical spastic paraparesis (HAM/TSP) development is the HTLV-1–infected cell burden. Viral proteins Tax and HBZ, encoded by the sense and antisense strands of the pX region, respectively, play key roles in HTLV-1 persistence. Tax drives CD4+ T cell clonal expansion and is the immunodominant viral antigen recognized by the immune response. Valproate (2-n-propylpentanoic acid, VPA), a histone deacetylase inhibitor, was thought to trigger Tax expression, thereby exposing the latent HTLV-1 reservoir to immune destruction. We evaluated the impact of VPA on Tax, Gag, and HBZ expressions in cultured lymphocytes from HTLV-1 asymptomatic carriers and HAM/TSP patients. Approximately one-fifth of provirus-positive CD4+ T cells spontaneously became Tax-positive, but this fraction rose to two-thirds of Tax-positive–infected cells when cultured with VPA. Valproate enhanced Gag-p19 release. Tax- and Gag-mRNA levels peaked spontaneously, before declining concomitantly to HBZ-mRNA increase. VPA enhanced and prolonged Tax-mRNA expression, whereas it blocked HBZ expression. Our findings suggest that, in addition to modulating Tax expression, another mechanism involving HBZ repression might determine the outcome of VPA treatment on HTLV-1–infected-cell proliferation and survival. (Blood. 2011; 118(9):2483-2491)

Introduction

Human T-lymphotropic virus-1 (HTLV-1) is the etiologic agent of adult T cell leukemia (ATL) and HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP).1,2 Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (ACs), the lifetime cumulative risk of developing ATL or HAM/TSP is <5%. HTLV-1–provirus integrates into the genome of infected cells, predominantly CD4+CD25+ T lymphocytes, which represent the main reservoir in peripheral blood.3,4,5,6 HAM/TSP, a central nervous system neuroinflammatory disease, is associated with perivascular and parenchymal infiltration of HTLV-1–infected T cells and activated cytotoxic T lymphocytes (CTLs).4

A major determinant of HTAM/TSP development is the HTLV-1–infected cell burden. The peripheral blood HTLV-1–proviral load is higher in HAM/TSP patients than AC.5,6 Follow-up studies of HAM/TSP cohorts showed that high provirus loads were associated with rapid disease progression.7,9 Those studies also demonstrated a relative stability of the HTLV-1–proviral load throughout the disease. Set-point provirus load and subsequent HAM/TSP risk are influenced by the cellular immune-response efficiency,10 although excessive activation of HTLV-1–specific CTLs might become deleterious and contribute to central nervous system tissue damage.4 Host-pathogen interplay is characterized by very dynamic kinetics, resulting in an equilibrium between the virus-driven clonal expansion of infected T cells11 and tight control exerted by the immune response.10

© 2011 by The American Society of Hematology
zipper factor (HBZ), encoded by the provirus negative strand is suspected of down-regulating virus transcription and contributing to immune escape. HBZ mRNA promotes CD4 T-lymphocyte proliferation and, unlike Tax mRNA, is consistently detected in ATL cells. HBZ expression probably contributes to lymphocyte proliferation and, unlike Tax mRNA, is consistently detected in ATL cells.25 HBZ expression probably contributes to leukemogenesis.26,27

Herein, we evaluated the kinetics of Tax-, Gag-, and HBZ-gene expressions in CD4 T lymphocytes from ACs and HAM/TSP patients during short-term cultures with or without valproate. The HBZ-mRNA increase was delayed concomitant with decreasing Tax- and Gag-gene products. Notably, VPA had opposite effects on both transcriptions: enhancing sense transcriptions (ie, Tax and Gag expression), while impairing antisense transcription (ie, HBZ mRNA). Our findings suggest that HDACs and their inhibitors have complex interactions with HTLV-1 replication and clonal expansion of infected cells.

Methods

Patients

This study, conducted at University Hospital of Fort-de-France, Martinique (French West Indies), included 11 HAM/TSP patients and 12 ACs. HAM/TSP diagnosis was based on the 4 World Health Organization criteria: slowly progressive spastic paraparesis with symmetrical pyramidal signs, disturbed bladder function, no radiologic evidence of significant spinal cord compression, and intrathecal synthesis of anti-HTLV-1 antibodies. Since 1998, magnetic resonance imaging has replaced myelography to exclude spinal cord compression.9 ACs had no neurologic symptoms. Peripheral blood samples were used in accordance with French bioethics laws concerning biologic collections. All experiments using patient samples were approved by the Ministère de la Recherche and the Comité de Protection des Personnes.

Cell culture and VPA treatment

We isolated PBMCs from EDTA-anticoagulated blood samples on Ficoll-density gradients and washed them in PBS. CD8+ cells were removed using anti-CD8 paramagnetic microbeads (Miltenyi Biotec), following the manufacturer’s instructions. CD8+ cell-depleted PBMCs were then placed in culture wells (round-bottomed 24-well plate) at 10⁶/mL in 1 mL of RPMI 1640 medium, supplemented with 10% FCS, glutamine (2mM), penicillin (100 IU/mL), and streptomycin (100 µg/mL; Eurobio). When appropriate, VPA was added to the medium at 1 or 5mM concentrations; the former subjecting to reverse transcription by SuperScript II reverse transcriptase (Invitrogen) in the presence of oligo(dT)12-18 primer (Invitrogen). Real-time PCR was run in triplicate by using LightCycler 480 SYBR Green I Master Mix on LightCycler 480 thermocycler (Roche Applied Science). Respective forward and reverse primers used were Tax (forward primer, 5’-CCAAACACATGGCCCCACTT-3’; reverse primer, 5’-GATGGGGTCCAGGTGATCT-3’), Gag (forward primer, 5’-AGCCCCCAGTTCTAGCAGACC-3’; reverse primer, 5’-GAGGGAGGAGCAGAAGGTG-3’), and HBZ (forward primer, 5’-ATGGGCCGCTCAGGGCTGT-3’; reverse primer, 5’-TGGAGGCCCCCGCTGCGAG-3’). Relative mRNA quantification was performed using Cq (crossing point) determined by the second derivative peak of each amplification curve and normalized to reference genes β-actin (forward primer, 5’-CCAAACACATGGCCCCACTT-3’; reverse primer, 5’-CCAAGGAAAGGTG-3’) and hypoxanthine-guanine phosphoribosyl-transferase-1 (forward primer, 5’-TGACACTGGCACAATGCA-3’; reverse primer, 5’-GTGCTCTTTTACCCAGAAGTG-3’).

Measurement of HTLV-1–provirus load

HTLV-1–proviral load was quantified using the real-time TaqMan polymerase chain reaction method, as described previously.9 In brief, SK110/SK111 primers were employed to amplify a 186-bp fragment of the pol gene, and the dual-labeled TaqMan probe (5’-5-carboxyfluorescein and 3’-5-carboxytetramethylrhodamine) was located at bp 4829-4858 of the HTLV-1 reference sequence (HTLVAKT). Albumin DNA was quantified in parallel to determine the input cell number and was used as an endogenous reference. Standard curves were generated using 10-fold serial dilutions of a double standard plasmid (pCHTLV-ALB) containing 1 copy of the target regions of the HTLV-1 pol and cellular albumin genes. All samples were run in duplicate. The HTLV-1–provirus load was reported as ([HTLV-1 average copy number/albumin average copy number]) × 2 × 10⁶ and is expressed as the number of HTLV-1 copies/10⁶ cells.

Estimation of gene expression per HTLV-1–infected cell

Assuming that almost all infected cells in non-ATL cases harbor only 1 provirus, it can be considered that provirus load reflects the percentage of infected cells. Proviral load was used to estimate the percentage of HTLV-1–provirus positive cells expressing Tax protein and, when appropriate, to normalize gene expression between different samples and incubation times.

Statistical analyses

Data on paired and unpaired observations were compared, respectively, with Wilcoxon’s signed-rank test and the Mann-Whitney U test. Correlations between continuous variables were assessed with Spearman’s rank-order statistic. Statistical significance was set at P < .05.
Results

VPA was proapoptotic for lymphocytes isolated from AC and HAM/TSP patients

We first verified VPA impact on cell viability of short-term cultured CD8\(^{-}\)-cell–depleted lymphocytes from HTLV-1–infected individuals. The VPA proapoptotic effect increased gradually from D0 to D2 and was dose-dependent, being higher at 5mM than at 1mM VPA (Figure 1). On D2 of culture of AC lymphocytes, the mean ± SD percentages of annexin-positive cells were 16 ± 2% in 1mM VPA-treated versus 6 ± 1% in nontreated wells and 29 ± 15% in 5mM VPA-treated versus 4 ± 1% in nontreated wells (Wilcoxon signed-rank test: \(P = .008\) and .008, respectively). D2 rates of HAM/TSP patients’ apoptotic cells were 12 ± 6% in 1mM VPA-treated versus 5 ± 2% in nontreated wells and 31 ± 2% in 5mM VPA-treated versus 4 ± 1% in nontreated wells (Wilcoxon signed-rank test: \(P = .03\) and .008, respectively). As shown in Figure 1, VPA-induced apoptosis levels in cells from AC and HAM/TSP patients at each time, and VPA concentration were comparable (Mann-Whitney \(U\) test, \(P > .5\)).

VPA did not affect HTLV-1–provirus load during ex vivo culture of HTLV-1–infected CD8\(^{-}\)-cell–depleted PBMCs

Mean ± SD and median HTLV-1–provirus loads in freshly isolated (D0) and CD8\(^{-}\)-cell–depleted PBMCs from all samples evaluated were 50 589 ± 36 636 and 43 500 copies/10\(^{6}\) cells. No correlation was found between initial percentages of HTLV-1–infected cells, assessed as HTLV-1–provirus load, remained stable over 5 days of culture with or without VPA (Figure 2). The difference observed on D5 was not significant (Wilcoxon signed-rank, test \(P = .1\)).

VPA enhanced Tax- and Gag-protein levels in short-term cultures of HTLV-1–infected CD8\(^{-}\}-cell–depleted PBMCs

We next analyzed the expression of intracellular Tax by flow cytometry for 20 HTLV-1–infected samples. Tax-labeling efficiency using the anti–Tax Lt-4-FITC–conjugated mAb was first
verified using MT2 cells (data not shown). Quadruple labeling showed that Tax was almost exclusively detected in CD25-expressing CD3+/CD4+/CD25+ lymphocytes (Figure 3A-B).

Tax was detected in <0.5% of CD4+ T cells freshly isolated (D0) or cultured for 6 hours with or without VPA. Mean percentages of Tax protein-expressing CD4+ T cells in VPA-treated and nontreated wells rose to 3.4% and 1.1%, respectively, on D1 (Wilcoxon signed-rank test, \( P = .01 \)) and 1.4% and 0.4%, respectively, on D2 (Wilcoxon signed-rank test, \( P = .02 \)). Mean peak percentage (D1 or D2) of Tax expression was 3.9% of VPA-treated and 1.1% of nontreated CD4+ T cells (Wilcoxon signed-rank test, \( P = .001 \)). Median values are shown in Figure 4A. Results were similar for both VPA concentrations (data not shown). When considering HTLV-1–provirus loads measured at each time, the estimated median rate of provirus-positive CD4+ T cells spontaneously expressing Tax increased from <8% on D0 to 19% on D1 and returned to 10% on D2. When VPA was added to the culture medium, the median Tax-detection rate rose to 63% on D1 but was 18% on D2. The difference between VPA-treated and nontreated samples was significant on D1 but not D2 (Wilcoxon signed-rank test, \( P = .0001 \) and .059, respectively). Tax-expression kinetics with and without VPA was similar in samples from 10 AC and 10 HAM/TSP patients (Figure 4B).

Opposite VPA effects on the kinetics of HTLV-1 sense and antisense gene expressions in CD8+-cell–depleted PBMCs from HTLV-1–infected subjects

To explore further the VPA effect on Tax and HBZ expressions at the transcriptional level, we investigated Tax-, Gag-, and HBZ-mRNA expression kinetics by quantitative RT-PCR.

We first quantified viral mRNA expression in CD8+-cell–depleted PBMCs from AC or HAM/TSP patients cultured without

Figure 3. Tax induction in HTLV-1–infected CD4+ T cells treated with 1mM VPA. Intracellular Tax-protein expression in CD4+ T cells was analyzed by flow cytometry using quadruple CD3, CD4, CD25, and Tax (Lt-4 mAb) labeling and appropriate isotype controls. Experiments were performed on D0, D1, and D2 of culture of lymphocytes from 10 HTLV-1 ACs (A) and 10 HAM/TSP patients (B). D0 and D1 results from 1 representative experiment are shown.
VPA (Figure 6). For both groups, Gag and HBZ expressions were low at culture onset. We observed that in AC, Tax-mRNA level correlated with provirus load (Spearman’s coefficient, \( R = 0.812; P = .008 \)) but not for HAM/TSP patients (\( R = 0.195, P = .59 \)). As expected, we also observed increased Tax expression during the first 24 hours of culture. Maximum of Tax-expression peaks were reached after 1 day of culture for both groups, independently of clinical status (Figure 6A-B). Concomitantly with the Tax increase, the Gag-mRNA level rose during D1 of culture. Tax- and Gag-mRNA kinetics were parallel, and their expressions were correlated (\( R = 0.546, P = .0007 \) for AC patients; \( R = 0.565, P = .0001 \) for TSP/HAM patients).

Median HBZ-mRNA expressions increased after 5 days of culture in CD8\(^{-}\)-cell–depleted PBMCs from AC patients’ cells (Figure 6A) and after only 2 days of culture in HAM/TSP patients’ cells (Figure 6B). It is worth noting that the HBZ-mRNA level on D5 correlated with proviral load in AC patients (\( R = 0.800, P = .01 \)) but not in HAM/TSP patients, and increased HBZ expression, issued from 3’-terminal repeat (LTR)-dependent transcription, seemed to correspond to decreased gene expression derived from 5’-LTR–dependent transcription (Tax and Gag).

We next assessed the VPA effect on Tax-, Gag-, and HBZ-gene expressions. CD8\(^{-}\)-cell–depleted PBMCs from HTLV-1–infected subjects were incubated with 1 or 5mM VPA. We observed an increased Tax mRNA in treated lymphocytes, as observed by flow cytometry (Figure 3). When 1mM VPA was used, no difference was observed in the Tax-induction ratio (Tax level with VPA/Tax level without VPA) between cells from AC and HAM/TSP patients (data not shown). However, with 5mM VPA, the Tax-induction ratio was significantly higher in HAM/TSP patients’ cells than in AC patients’ cells after 2 days of culture (Wilcoxon signed-rank test: \( P = .004 \) and .005, respectively, vs nontreated cells).

**Figure 4.** Valproate increases Tax-protein expression in HTLV-1–infected CD4\(^{+}\) T cells from asymptomatic carriers and HAM/TSP patients. Rates of Tax-protein–positive cells among HTLV-1–infected CD4\(^{+}\) T cells were calculated by normalizing the percentages of Tax-positive CD4\(^{+}\) cells, determined by CD3, CD4, and Tax triple labeling (A), with the percentage of infected cells in the CD4\(^{+}\) population, as assessed by HTLV-1–proviral load (B). Estimated median (and first quartile) percentages of Tax-positive cells among HTLV-1–infected CD4\(^{+}\) cells on D0 to D2 of culture is represented for 10 ACs (•) and 10 HAM/TSP patients (○) treated with 5mM VPA (dashed lines) or nontreated (Ctrl, solid lines), respectively.

**Figure 5.** VPA activates the expression of the virus core-protein p19 in the culture supernatants of CD4\(^{+}\) T cells from HTLV-1–infected individuals. Culture supernatants were collected and expression of virus core-protein p19 was quantified by ELISA. Absolute p19 concentrations (in picograms per milliliter) were determined by normalization of absorbance values to a standard curve. p19-protein levels were corrected by considering the proportion of nonapoptotic cells, determined from annexin-PI flow cytometry analysis of each sample. Mean ± 1 SD concentration at different incubation times is represented for the 20 HTLV-1–infected samples cultured without (black bars) or with 5mM VPA (cross-hatched bars).

**Figure 6.** Kinetics of Tax-, Gag-, and HBZ-mRNA expressions in short-term cultures of CD4\(^{+}\) T cells from HTLV-1 asymptomatic carriers and HAM/TSP patients. Tax (●, solid line), Gag (●, dotted line), and HBZ-mRNA (○, solid line) in ex vivo cultured lymphocytes from AC (A) or HAM/TSP (B) patients were quantified (as described under “Methods”). The medians (and first quartiles) expressed in arbitrary units (AU) for 8 AC and 10 HAM/TSP patients are shown.
we compared VPA Tax-induction ratios in ex vivo cultures of 
T lymphocytes from HAM/TSP patients, both VPA concentrations 
had similar effects during the first 24 hours of culture (Figure 7A).
For cells treated with 1mM VPA, the median Tax-induction peaked 
after 48 hours of culture and decreased between D2 and D5. In 
contrast, in 5mM VPA-treated T lymphocytes from HAM/TSP 
patients, Tax expression was strongly induced from D2 to D5, 
compared with that of nontreated cells (Wilcoxon signed-rank test: 
\( P = .003 \) and .0465, respectively; Figure 7A). Moreover, this 
induction in 5mM VPA-treated cells was significantly higher than 
in 1mM VPA-treated cells (Wilcoxon signed-rank test, \( P = .01 \) on 
D2 and .008 on D5). Furthermore, in the presence of 5mM VPA, 
Tax expression remained high during ex vivo culture of HAM/TSP 
patients’ cells. No such phenomenon was observed in 5mM 
VPA-treated AC patients’ cells.

Although VPA increased the Gag-mRNA level in both HTLV-1– 
infected groups (data not shown), induction was only statistically 
significant in HAM/TSP patients’ lymphocytes after 24 hours of ex 
vivo culture with 1mM VPA and from D2 to D5 for the 5mM dose 
(Wilcoxon signed-rank test: \( P = .03, .009, .003, \) and .01 for D2, 
D3, D4, and D5, respectively).

We next examined VPA impact on HBZ expression (Figure 7B).
Intriguingly, VPA seemed to have an opposite effect from that 
observed on Tax and Gag genes controlled by \( 5'\)-LTR transcription. Indeed, VPA treatment inhibited HBZ expression during late 
culture times. This inhibition was especially evident on D5, even 
with the lowest VPA concentration, for HAM/TSP patient’s cells 
(Wilcoxon signed-rank test: \( P = .05 \) and .05; Figure 7B). No 
statistically significant VPA effect was seen on HBZ expression in 
AC patients’ cells, probably because the initial HBZ level in 
nontreated cells was too low to observe any down-modulating 
effect of VPA.

**Discussion**

Reduction of the HTLV-1–provirus load might prevent long-term 
development of HAM/TSP or slow its progression. Therapeutic 
protocols designed to affect HTLV-1–infected cell proliferation 
or virus replication are still ineffective. A novel approach, called 
gene-activation therapy, has been proposed, based on preclinical 
trials in the bovine leukemia virus model and preliminary data on 
HAM/TSP. The principle is to activate viral gene expression by 
HDAC inhibitors and thereby expose virus-positive cells to the 
host immune response. Attention has focused on VPA, the sodium salt of 2-propylpen- 
tanoic acid, which is well tolerated and displays adequate pharma- 
cokinetics. This compound induces histone hyperacetylation and 
activates HTLV-1 5'–promoter–driven transcription. VPA enhances Tax-protein expression during short-term culture of HTLV-1– 
infected cells. Mosley et al estimated that VPA exposure 
increased the percentages of Tax-expressing provirus-positive 
CD4+ cells from 13% to 22%. We confirmed this observation, but 
with Tax-expressing provirus-positive cells rising from one-fifth 
spontaneously to two-thirds after adding VPA to the culture. 
Almost all Tax-expressing CD4+ T cells were CD25-positive. The 
CD3+CD4+CD25+ subset is the major reservoir of HTLV-1– 
provirus and Tax peptide–HLA class I complexes and might 
stimulate and expand HTLV-1 Tax-specific CD8+ T cells. Together, 
these quantitative and qualitative data are consistent with 
the theoretical hypothesis of unmasking of the latently infected cell 
pool and CTL clearance. However, concerns have been raised 
about therapeutic applications. A variety of proteins are regulated 
by HDAC-mediated acetylation and it was suggested that, as a 
side-effect of VPA treatment, the CD8+ cell antiviral function 
might be altered. Moreover, memory CD8+ T cells contribute to 
virus reservoir in vivo and might be destroyed by autologous 
HTLV-1–specific CTL in a fractricidal response. Finally, the major 
risk would be to trigger virus replication, as evidence by viral p19 
matrix-antigen release, stimulate Tax-driven clonal expansion, and 
favor, if uncontrolled, subsequent central nervous system–tissue 
invasion.

To address this question, more information on the mechanisms 
inolved in controlling HTLV-1–gene expression is required. HBZ 
is a potent suppressor of Tax-mediated virus-gene transcription by 
interacting with activating transcription factor/cAMP responsive 
element-binding protein (CREB) and CREB-binding protein/p300 
on the 5'–LTR promoter. The HBZ role in the tightly 
regulated pattern of HTLV-1–gene expression also is suggested by 
HBZ repression of Gag-p19 synthesis in stable virus-producing cell 
clones. Kinetic study of gene expressions in cells transiently
transfected with the HTLV-1–provirus plasmid and in newly infected PBMCs showed that Gag/Pol, Tax/Rex, and Env mRNA are detected first and at their highest levels, whereas HBZ transcription was significantly lower and peaked later.45 However, high-level expression of Tax and HBZ mRNA in HTLV-1–infected individuals. Tax and Gag-mRNA expressions peaked at high levels on culture D1, before declining progressively concomitant with the rise of HBZ expression. Although the chronology in HAM/TSP cells is consistent with the hypothesis of a feedback loop coordinating Tax and HBZ expressions, we cannot exclude that in ACs the observed concomitant Tax-expression decrease and HBZ-expression in-crease are not related to cellular mechanisms or perhaps involve other HTLV-1 auxiliary proteins, for example, p30 or Rex.23 Indeed, as shown in Figure 6, expression of Tax and HBZ were regulated differently in infected cells from AC and TSP/HAM patients.

VPA induced moderate and dose-dependent apoptosis of cultured CD4+ lymphocytes. Apoptosis rates were similar in lymphocytes from HAM/TSP patients and ACs, and there was no evidence of specific elimination of HTLV-1–infected cells. However, this drug requires further studies designed to test its effect on HTLV-1–transformed cells. Indeed, VPA has been shown to induce the death of chronic lymphocytic leukemia cells,47 and several trials are currently exploring its activity against various types of cancer, including hematologic malignancies.48 Depsipeptide, another HDAC inhibitor, has demonstrated efficacy against primary ATL cells.49 Moreover, in a murine model of human ATL,50 HDAC inhibitors are able to trigger growth arrest and death of HTLV-1–infected cell lines and ATL cells via activation of the death-receptor pathway and potential-ization of tumor necrosis factor-related apoptosis-inducing ligand response.51 More generally, epigenetic drugs are known to regulate expression of tumor-suppressor genes and activities of transcriptional factors involved in cancer initiation and progression. In the HTLV-1 model of leukemogenesis, HBZ is critical for immune escape and proliferation of ATL cells.27 The possibility of targeting HBZ expression with VPA at therapeutically useful concentrations opens a new avenue of research for the prevention or treatment of HTLV-1–associated diseases.

Acknowledgments

The authors thank Dr Bruno Beaumelle for critical reading of the manuscript.

This study was supported by the Agence Nationale de la Recherche, the Contrat de Plan Etat-Région Martinique, and the European Regional Development Fund. G.B. was supported by a grant from the Conseil Régional de la Martinique. J.-M.P. was supported by the Groupements des Entreprises Françaises dans la Lutte contre le Cancer Languedoc–Roussillon.
Authorship

Contribution: G.B. performed experiments and contributed to the experimental design and data interpretation; A.G. performed experiments and contributed to data interpretation and paper writing; A.L. and M.D. contributed to the experimental design; I.K.-S. performed experiments; S.O. and D.S. performed clinical assessment and recruitment of patients; Y.T. provided essential reagents; L.W., J.-M.M., and J.-M.P. contributed to paper writing; and R.C. designed the study, interpreted data, and wrote the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Raymond Césaire, Laboratoire de Virologie–Immunologie and EA 4537, Centre Hospitalier Universitaire de Fort-de-France, BP 632, 97261 Fort-de-France, Martinique, France; e-mail: raymond.ceesaire@chu-forde-france.fr

References


Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSP T lymphocytes

Gildas Belrose, Antoine Gross, Stéphane Olindo, Agnès Lézin, Maryvonne Dueymes, Isabelle Komla-Soukha, Didier Smadja, Yuetsu Tanaka, Luc Willems, Jean-Michel Mesnard, Jean-Marie Peloponese Jr and Raymond Césaire