Dysregulation of the HIF pathway due to VHL mutation causing severe erythrocytosis and pulmonary arterial hypertension

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops evidence of pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.

Hereditary erythrocytosis can be caused by mutations in genes involved in the hypoxia-inducible factor (HIF) pathway.1-3 For example, Chuvash polycythemia is caused by an R200W substitution in the von Hippel–Lindau protein (VHL).1 There is increasing evidence linking VHL-HIF dysregulation to altered vascular physiology, and a mouse model of Chuvash polycythemia develops pulmonary arterial hypertension (PAH) who is a compound heterozygous mutation causing severe erythrocytosis and pulmonary arterial hypertension.
stability of each protein. We measured the rate of reduction in protein level after inhibition of translation with cycloheximide. This was consistently increased in the D126N and S183L clones compared with clones expressing WT (Figure 1E-F). This instability is unlikely to contribute to impaired ability to regulate HIF in the complementation assays described above, in which the VHL proteins are expressed at much higher levels than in normal cells. However, we postulate that decreased stability of VHL in EPO-producing cells in vivo is the most likely explanation for the severity of the phenotype.
Now 8 years old, this patient undergoes regular phlebotomy to maintain an Hb of less than 16 g/dL. Pulmonary vascular measurements remain stable, with no evidence of ventricular dysfunction. He remains under surveillance for classic features of VHL disease, though has developed none to date.

Jonathan Bond
Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, Department of Haematology, Great Ormond Street Hospital for Children, and Medical Research Council Clinical Sciences Centre, Imperial College London, London, United Kingdom

Daniel P. Gale
Division of Medicine, Rayne Institute, University College London, and Imperial College Kidney and Transplant Unit, Imperial College London, London, United Kingdom

Thomas Connor
Division of Medicine, Rayne Institute, University College London, London, United Kingdom

Stuart Adams
Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom

Jasper de Boer
Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London, United Kingdom

Duncan M. Gascoyne
Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London, United Kingdom, and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom

Owen Williams
Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London, United Kingdom

Patrick H. Maxwell
Division of Medicine, Rayne Institute, University College London, London, United Kingdom

Acknowledgments: The authors are grateful to the patient and the patient’s family and to Miss Kerry Baker for obtaining blood samples. Mammalian expression plasmids were kind gifts from Wilhelm Krek (Institute of Cell Biology, Zurich, Switzerland) and Alexander Hergovich (Friedrich Meischer Institute for Biomedical Research, Basel, Switzerland).

Contribution: J.B. and D.P.G. designed and performed experiments, analyzed and interpreted results, and wrote the paper; T.C., S.A. and J.d.B. performed experiments; D.M.G. and O.W. provided experimental advice and analyzed and interpreted results; and P.H.M. and P.A. supervised the project.

Conflict-of-interest disclosure: P.H.M. is a founder and scientific director of ReOx Ltd, which aims to develop PHD inhibitors. The remaining authors declare no competing financial interests.

Correspondence: Dr Jonathan Bond, 4th Floor, MRC Clinical Sciences Centre, Imperial College, Hammersmith Campus, Du Cane Rd, London W12 0NN, United Kingdom, e-mail: j.bond@imperial.ac.uk.

References

Dysregulation of the HIF pathway due to VHL mutation causing severe erythrocytosis and pulmonary arterial hypertension

Jonathan Bond, Daniel P. Gale, Thomas Connor, Stuart Adams, Jasper de Boer, Duncan M. Gascoyne, Owen Williams, Patrick H. Maxwell and Philip J. Ancliff