Brief report

Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia

Felicitas Thol,1 Frederik Damm,1 Katharina Wagner,1 Gudrun Göhring,2 Brigitte Schlegelberger,2 Dieter Hoelzer,3 Michael Lübbert,4 Wolfgang Heit,5 Lothar Kanz,6 Günter Schlimgok,7 Aruna Raghavachar,8 Walter Fiedler,9 Hartmut Kirchner,10 Gerhard Heil,1,11 Michael Heusser,1, *Jürgen Krauter,1 and *Arnold Ganser1

1Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, and 2Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover; 3Department of Internal Medicine III, University of Frankfurt, Frankfurt; 4Department of Hematology-Oncology, University of Freiburg Medical Center, Freiburg; 5Department of Hematology/Oncology, Ev. Krankenhaus Essen-Werden, Essen; 6Department of Internal Medicine II, University of Tübingen, Tübingen; 7Department of Hematology and Oncology, Klinikum Augsburg, Augsburg; 8Department of Hematology, Oncology and Nephrology, HELIOS Klinikum Wuppertal, Wuppertal; 9Department of Medicine II, Oncological Center, Hubertus Wald University Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg; 10Department of Internal Medicine III, Krankenhaus Siloah, Hannover; and 11Department of Internal Medicine V, Klinikum Lüdenscheid, Germany

Mutations in the nicotinamide adenine dinucleotide phosphate–dependent isocitrate dehydrogenase gene 2 (IDH2) have recently been found in patients with acute myeloid leukemia (AML) as well as in patients with leukemic transformation of myeloproliferative neoplasms. We analyzed 272 adult patients with cytogenetically normal AML (CN-AML) for the presence of IDH2 mutations in codons R140 and R172. IDH2 mutations of amino acid 140 or 172 could be identified in 12.1% of CN-AML patients, with the majority of mutations (90%) occurring at position R140. The incidence of IDH2 mutations in AML patients with aberrant karyotypes (n = 130) was significantly lower (3.8%, P = .006). IDH2 mutations were mutually exclusive with mutations in IDH1. IDH2 mutation status alone or in combination with IDH1 mutations had no impact on response to therapy, overall survival, and relapse-free survival in patients with CN-AML. In conclusion, IDH2 mutations are frequently found in CN-AML, but in our analysis these mutations did not influence treatment outcome. This study was registered at www.clinicaltrials.gov as NCT00209833. (Blood. 2010;116(4): 614-616)

Introduction

In an attempt to discover unknown molecular alterations in patients with acute myeloid leukemia (AML), whole genome sequencing was performed on AML patients.1 With this approach, a novel mutation in nicotinamide adenine dinucleotide phosphate–dependent isocitrate dehydrogenase gene (IDH1) at codon R132 has been identified previously described in gliomas.3 Since this first description of IDH1 mutations in AML, several reports have confirmed that IDH1 mutations occur in patients with cytogenetically normal AML (CN-AML), with a frequency of 5.5% to 11%.4-7 A strong association between IDH1 mutations and intermediate-risk karyotypes and concurrent NPM1 mutations has been described.4,7 The prognostic impact of IDH1 mutations in AML is currently being investigated.4,7 A recent study also found mutations in IDH2 in codon R172 at a low frequency in AML patients.5 In addition, a novel mutation in IDH2 in codon R140 could be identified in 2 patients with leukemic transformation of myeloproliferative neoplasm as well as in patients with AML.8,9 IDH2 has the same enzymatic activity as IDH1 but is located in the mitochondrial matrix.

In the present study, we performed a comprehensive analysis of mutations occurring in exon 4 of IDH2 (including both codons R140 and R172) in 272 patients with CN-AML in the context of other known prognostic markers. These patients were intensively treated with a uniform protocol in 2 consecutive multicenter trials. Overall, our data indicate that IDH2 mutations in codons R140 and R172 are frequent but have no prognostic implications in patients with CN-AML when considered alone or in combination with IDH1 mutations and treated with these intensive protocols.

Methods

Patients

We examined 272 patients with CN-AML and 130 AML patients with aberrant karyotypes for mutations in IDH2. Of the latter, 45 had a core-binding factor leukemia, 15 had aberrations of chromosome band 11q23, 13 had a complex karyotype, 12 had an isolated trisomy 8, 7 had a monosomy 7, 5 had aberrations of chromosome 3q, 4 had a del(9q), 3 had a t(6;9), and 26 had various other aberrations. All patients were treated within the multicenter treatment trials AML SHG 0295 or AML SHG 0199. Details of the treatment protocols have been previously reported.10,11 Written informed consent was obtained in accordance with the Declaration of Helsinki, and the study was approved by the Institutional Review Board of Hannover Medical School.

Mutational analysis of IDH2

Preparation of mononuclear cells and analysis of prognostic markers were performed as previously reported.5,12 The genomic region of the IDH2 gene

*J.K. and A.G. contributed equally to this study.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

© 2010 by The American Society of Hematology
Results and discussion

IDH2 mutations were found in 33 of 272 patients (12.1%) with CN-AML (30 patients [11%] in codon R140 and 3 patients [1.1%] in codon R172) and 3.8% of 130 AML patients with aberrant karyotypes. As already described for *IDH1*, *IDH2* mutations were associated with a normal karyotype (*P* = .006), whereas no association with a single chromosomal aberration could be identified for the group of AML patients with aberrant karyotypes (supplemental Table 1, available on the *Blood* Web site; see the Supplemental Materials link at the top of the online article). *IDH2* R140 mutations in CN-AML seem to be similarly common as *IDH1* mutations, but *IDH2* mutations in AML appear to be different from those in gliomas where *IDH2* R140 mutations have not been described yet. The majority (31 of 33 patients, 93.9%) of *IDH2* R140 mutations showed a heterozygous conversion of CGG → CAG leading to an arginine to glutamine substitution, whereas one patient had a homozygous CGG → CAG conversion and one patient showed a heterozygous conversion of CGG → CTG leading to an arginine to leucine substitution. Four of 5 patients with mutations in codon 172 had a heterozygous conversion of AGG → AAG leading to an arginine to lysine substitution, whereas one patient showed a heterozygous conversion of AGG → AGT leading to an arginine to serine substitution. By comparing the clinical and hematologic characteristics of *IDH2*-mutated versus unmutated CN-AML patients, apart from a higher platelet count in patients with *IDH2* mutations, no significant difference in relevant markers was found between the 2 groups (supplemental Table 2). However, *IDH2* mutations were mutually exclusive with mutations in *IDH1*. This has also been described in gliomas suggesting overlapping effects of both mutations. To determine whether patients lose their *IDH2* mutation in remission, we examined 5 patients with an *IDH2* mutation at the time of diagnosis during the postinduction phase. All 4 patients in continuous remission lost the *IDH2* mutation during remission. However, 1 relapsing patient, who had lost the *IDH2* mutation in remission, was again positive at relapse. An additional patient with mutant *IDH2* at the time of diagnosis was again positive at the time of relapse. These data suggest that *IDH2* mutations are stable during disease progression and might be a suitable marker for minimal residual disease monitoring. To analyze the prognostic impact of *IDH2* mutations in CN-AML, *IDH2* R140 and R172 mutations were combined because of the low incidence of R172 mutations. In univariate and multivariate analysis with adjustment for *IDH2* mutations had no impact on OS in univariate or multivariate analysis (Figure 1A, Table 1, supplemental Table 3). In addition, no influence on OS was found for *IDH2* mutations in an exploratory subgroup analysis for the *NPM1mut*/FLT3-ITD patients (supplemental Figure 1A). Of the 214 patients who achieved complete remission, 98 relapsed and 30 died in complete remission, resulting in a median relapse-free survival (RFS) of 25 months and a 6-year RFS of 40% (95% confidence interval, 37%-43%). *IDH2* also had no impact on RFS in univariate or multivariate analysis (Figure 1B, Table 1, supplemental Table 3). Again, no influence on RFS was found for *IDH2* mutations in an exploratory subgroup analysis for the *NPM1mut*/FLT3-ITD patients (supplemental Figure 1B). The lack of a prognostic impact of *IDH2* mutations on treatment response and survival is in accordance with results for *IDH1* R132 mutations for which we and others did not find any prognostic implications in CN-AML. When analyzing *IDH1*/IDH2 mutations together, *IDH* mutations remained without prognostic effect. The high frequency of *IDH2* mutations in CN-AML but the missing prognostic implications for this marker proposes that the potential oncogenic effect of the mutation might be overcome by therapy. As already demonstrated for markers, such as *RAS* and *WT1* mutations, the therapy administered can have a significant influence on prognostic markers.

In conclusion, we have identified *IDH2* mutations of amino acids 140 and 172 in 12.1% of patients with CN-AML, with the majority of the mutations (90%) occurring in position R140.
Table 1. Significant variables in multivariate analysis for OS and RFS

<table>
<thead>
<tr>
<th>Endpoint/variable</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: above vs below median</td>
<td>2.04</td>
<td>1.42-2.99</td>
<td><.001</td>
</tr>
<tr>
<td>NPM1/FLT3 mutation status: low risk* vs high risk</td>
<td>0.66</td>
<td>0.44-0.97</td>
<td>.035</td>
</tr>
<tr>
<td>Platelets: above vs below median</td>
<td>0.61</td>
<td>0.42-0.88</td>
<td>.008</td>
</tr>
<tr>
<td>WT1 SNP rs16754</td>
<td>0.43</td>
<td>0.26-0.71</td>
<td>.001</td>
</tr>
<tr>
<td>RFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT1 SNP rs16754</td>
<td>0.60</td>
<td>0.39-0.92</td>
<td>.019</td>
</tr>
<tr>
<td>NPM1 mutation</td>
<td>0.51</td>
<td>0.35-0.74</td>
<td><.001</td>
</tr>
<tr>
<td>CEBPA mutation</td>
<td>0.36</td>
<td>0.19-0.67</td>
<td>.001</td>
</tr>
</tbody>
</table>

Variables with P values of less than or equal to .1 in univariate analysis were included for the multivariate analysis. For OS, these included age, FLT3-ITD, WT1 expression, extramedullary disease, platelets, NPM1/FLT3 status low risk vs others, CEBPA mutation, and WT1 SNP rs16754. For RFS, these included CEBPA mutation, WT1 SNP rs16754, NPM1 mutation, and NPM1/FLT3 status low risk vs others. Variables evaluated in univariate analysis (see also supplemental Table 3) included FLT3-ITD, age, WT1 expression, extramedullary disease, platelets high vs low, NPM1/FLT3 status low risk vs others, CEBPA mutation, WT1 SNP rs16754, NPM1 mutation, WT1 mutation, sibling vs no sibling donor, white blood cells high vs low, peripheral blasts high vs low, hemoglobin high vs low, de novo vs secondary AML, sex, IDH2 mutation, and IDH1 or IDH2 mutation combined.

HR indicates hazard ratio; and CI, confidence interval.

*NPM1/FLT3 low risk is defined as the presence of an NPM1 mutation in the absence of an FLT3-ITD.

Although in our study these mutations had no prognostic impact, further analyses are necessary to define their role in leukemogenesis and use as a marker for minimal residual disease monitoring.

References

Acknowledgments

The authors thank the patients and the members of the AML-Study Group as well as Kerstin Görlich, Martin Wichmann, Elvira Lux, Diana Dudacy, and Sylvia Horter for their excellent technical support.

This work was supported by the Deutsche-Jöss-Carreras Leukämie-Stiftung e.V. (grant DICLS H 06/04), Kompetenzzentrum “Akute und chronische Leukämien” (grant 01GI0378), and the Bundesministerium für Bildung und Forschung and the Dieter-Schlag-Stiftung (grant 01KG0605).

Authorship

Contribution: F.T., M.H., J.K., and A.G. designed the research; F.T., F.D., K.W., and M.H. performed the research; D.H., M.L., W.H., L.K., G.S., A.R., W.F., H.K., and G.H. contributed patient samples and clinical data; G.G. and B.S. performed cytogenetic studies; F.T., J.K., and A.G. analyzed the data and wrote the paper; and all authors read and agreed to the final version of the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Felicitas Thol, Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; e-mail: thol.felicitas@mh-hannover.de.
Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia

Felicitas Thol, Frederik Damm, Katharina Wagner, Gudrun Göhring, Brigitte Schlegelberger, Dieter Hoelzer, Michael Lübbert, Wolfgang Heit, Lothar Kanz, Günter Schlimok, Aruna Raghavachar, Walter Fiedler, Hartmut Kirchner, Gerhard Heil, Michael Heuser, Jürgen Krauter and Arnold Ganser

Updated information and services can be found at:
http://www.bloodjournal.org/content/116/4/614.full.html

Articles on similar topics can be found in the following Blood collections
- Brief Reports (1931 articles)
- Clinical Trials and Observations (4514 articles)
- Free Research Articles (4439 articles)
- Myeloid Neoplasia (1656 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml