Brief report

RH genotyping in a sickle cell disease patient contributing to hematopoietic stem cell transplantation donor selection and management

Ross M. Fasano,1,2 Alessandro Monaco,2 Emily Riehm Meier,1 Philippe Pary,1 A. Hallie Lee-Stroka,2 John Otridge,3 Harvey G. Klein,2 Francesco M. Marincola,2 Naynesh R. Kamani,1 Naomi L. C. Luban,1 David Stroncek,2 and Willy A. Flegel2

1Children’s National Medical Center, Washington, DC; 2National Institutes of Health, Bethesda, MD; and 3Progenika, Cambridge, MA

African individuals harbor molecular RH variants, which permit alloantibody formation to high-prevalence RH antigens after transfusions. Genotyping identifies such RH variants, which are often missed by serologic blood group typing. Comprehensive molecular blood group analysis using 3 genotyping platforms, nucleotide sequencing, and serologic evaluation was performed on a 7-year-old African male with sickle cell disease who developed an “e-like” antibody shortly after initiating monthly red blood cell (RBC) transfusions for silent stroke. Genotyping of the RH variant predicted a severe shortage of compatible RBCs for long-term transfusion support, which contributed to the decision for hematopoietic stem cell transplantation. RH genotyping confirmed the RH variant in the human leukocyte antigen–matched sibling donor. The patient’s (C)ce0 type 1 haplotype occurs in up to 11% of African American sickle cell disease patients; however, haplotype-matched RBCs were serologically incompatible. This case documents that blood unit selection should be based on genotype rather than one matching haplotype. (Blood. 2010;116(15):2836-2838)

Introduction

Red blood cell (RBC) transfusion is a common treatment for acute sickle cell disease (SCD)-related complications, and for both primary prevention of stroke and secondary stroke prophylaxis. RBC alloimmunization occurs in 18% to 47% SCD patients,1-3 compared with approximately 5% in thalassemia patients and 0.2% to 2.8% in the general population.2 Alloantibodies to C, E, and K antigens are most commonly involved, leading many transfusion centers to supply Rh and K phenotype-matched RBCs for SCD patients. Despite this practice, alloimmunization continues to complicate their RBC transfusions.

Reasons for the disproportionately high alloimmunization rates in SCD patients include in part disparate RBC antigens between donor and recipient due to clinically significant RH polymorphisms unrecognized by current serologic techniques.2 Individuals of African origin frequently harbor variants of RHD and RHCE genes. The absence of high-prevalence Rh antigens, like hr8 (Rh19), hr6 (Rh31), and Hr8 (RH34) in individuals homozygous for the variant predisposes them to Rh alloantibody formation after RBC transfusion,4,5 making the long-term transfusion support difficult to manage.

Hematopoietic stem cell transplantation (HSCT) has emerged as an alternative in many SCD patients who have severe disease, as a result of improved preparative regimens, graft sources, and reduction of HSCT-related side effects.6 Despite these advances, guidelines on the selection of and timing of SCD who would maximally benefit from HSCT have not been fully defined. Current consensus on HSCT indications include stroke, recurrent severe acute chest syndrome, chronic unremitting vasoocclusive pain despite supportive care, or the inability to provide adequate supportive care such as chronic transfusion therapy or hydroxyurea.7

Molecular technology has advanced our knowledge of RH polymorphisms, and its application has made RBC genotyping a clinically useful tool, often with superior accuracy to serologic phenotyping.8 We present an informative patient history documenting the application of RBC genotyping in guiding both transfusion and HSCT donor selection strategy.

Case reports

A 7-year-old Cameroonian male with SCD (HbSS) and with magnetic resonance imaging (MRI) findings of silent stroke on routine screening was enrolled on the National Institutes of Health–funded Silent Cerebral Infarct Multi-Center Clinical Trial (Silent Infarct Transfusion, SIT study; ClinicalTrials.gov no. NCT00072761) and randomized to receive chronic transfusions. His RBC serologic phenotype was B Ccddee kk. After 8 leukocyte-reduced, Rh- and K-matched RBC transfusions from different donors, he developed a complicated alloantibody with “e-like” specificity. The antibody did not react like a simple alloanti-e (supplemental Table 1, available on the Blood Web site; see the Supplemental Materials link at the top of the online article). It did not represent an autoanti-e either because the patient’s own RBCs were cross-match-compatible with the patient’s antibody in the plasma. Cross-matching with D variants (supplemental Tables 2-3) and greater than 15 RBC units (not shown) indicated that compatible units would be difficult to obtain.
RBC genotyping confirmed an RH variant that is known to be associated with a severe shortage of compatible RBC supply. Because of the alloantibody formation, which rendered him incompatible with approximately 99.9% of RBC units, he was removed from the trial and transitioned to hydroxyurea therapy, incompatible with approximately 99.9% of RBC units, he was because of the alloantibody formation, which rendered him incompatible with approximately 99.9% of RBC units, he was removed from the trial and transitioned to hydroxyurea therapy, incompatible with approximately 99.9% of RBC units, he was because of the alloantibody formation, which rendered him incompatible with approximately 99.9% of RBC units, he was removed from the trial and transitioned to hydroxyurea therapy, incompatible with approximately 99.9% of RBC units, he was because of the alloantibody formation, which rendered him incompatible with approximately 99.9% of RBC units, he was removed from the trial and transitioned to hydroxyurea therapy, incompatible with approximately 99.9% of RBC units, he was because of the alloantibody formation, which rendered him incompatible with approximately 99.9% of RBC units, he was removed from the trial and transitioned to hydroxyurea therapy.

RBC genotyping contributed to the clinical decision to perform a hematopoietic stem cell transplantation (HSCT) in a 7-year-old Cameroonian boy with sickle cell disease (SCD). This patient’s history points to a wider use for prospective RBC genotyping to guide medical decisions in SCD. Given that stable mixed chimerism can be expected in approximately 25% of SCD HSCTs with myeloablative conditioning, RBC genotyping may also be used to assist in HSC donor selection by identifying sibling donors who also possess the RH variant in order to prevent post transplantation chronic hemolysis or graft failure. Recently, RBC genotyping has been reported to impact HSCT decisions in a patient with chronic granulomatous disease (CGD), McLeod phenotype, and RBC alloantibodies. RBC genotyping has been implemented successfully in some institutions to facilitate the transfusion support of SCD patients with phenotypically matched RBCs; however, its relevance as diagnostic guide for influencing the decisions regarding HSCT and donor selection is new.

The patient harbored the more prevalent variant of the 2 known Cc ce types, (Cc ce type 1) in the plasma of the current patient was however unique. This complex alloantibody reacted selectively with high prevalence antigens of the Rh blood group, and was not an autoanti-e because the patient’s own RBCs were cross-match–compatible with the patient’s antibody in the plasma, the direct antiglobulin test (DAT) and elution of autologous RBCs after hypotonic washing as well as an auto-absorption were negative; among E antigen negative samples, only some RH variant RBCs were cross-match–compatible (supplemental Tables 1-3). The variable alloreactivity with many Rh variants precluded the continuation of chronic transfusion therapy because of the extreme

Methods

RBC genotyping analysis was performed using 3 commercially available genotyping platforms (Bloodchip, Progenika; Beadchip HEA version 1.2, Bioarray Solutions; and BAGene RH, Partial-D, Weak-D, D-zygosity, KKD, and MNS PCR-SSP kits, BAG) to assess the suitability of the available systems for the current clinical decision process (supplemental Table 4). Nucleotide sequencing using RHD- and RHCE-specific intronic primers was also performed (supplemental Tables 5-7).

Results and discussion

We performed RBC genotyping with 3 commercially available platforms (Table 1). The patient was found to be heterozygous for the (Cc ce type 1) haplotype, with the common dce haplotype in trans. Nucleotide sequencing confirmed the (Cc ce dce) genotype, and discriminated (Cc ce type 1 from (Cc ce type 2 by identifying a D/CE fusion point within RHD exon 3 along with 186 G>T (L62F), 410C>T (A137V), and 455A>C (N152T) nucleotide substitutions in exons 2 and 3 (Figure 1).
difficulty to supply compatible RBCs, and demonstrates the need for further molecular characterization of the hr4 and hrB antigens as well as donor screening.

A transfusion strategy using D negative (ccdde) RBC units was considered because the patient harbored the common dce haplotype, however the cross-match with ccdde RBC units was strongly positive. This case documents that knowledge of the genotype, which comprises both haplotypes, is useful.25

The current patient history demonstrates that prospective detection of RH variants, such as a (C)ce haplotype, through RBC genotyping offers several benefits to clinical decision making in SCD patients. Individuals at high risk of alloimmunization can be identified based on RH variant detection allowing clinicians to seek out alternatives to blood transfusion, like hydroxyurea or HSCT. More extensive blood donor screening by RBC genotyping for Rhesus and other blood group systems will allow the dry-matching of RBC units8 by identifying donors with compatible RH variants to provide the best compatible blood product. Identifying RH variants in HSCT donors may also be used for individuals undergoing HSCT, because prolonged stable mixed donor-host hematopoietic chimerism is expected to prevent chronic hemolysis in the posttransplantation setting.

Acknowledgments

The authors thank Mohamadou Sene for performing Beadchip HEA analysis.

The views expressed do not necessarily represent the view of the current affiliation for J.O. is BioFortis, Columbia, MD. Correspondence: Willy A. Flegel, MD, Chief, Laboratory Services Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892-1184; e-mail: flegelwa@cc.nih.gov.

References

Authorship

Contribution: R.M.F. participated in the patient care, performed sequencing experiments, analyzed and interpreted data, and wrote the manuscript; A.M. assisted in sequencing experiments and interpreted data; E.R.M. participated in the patient care, assisted in collecting samples and interpreting data; P.P. performed serologic evaluation and interpreted Beadchip HEA data; A.H.L.-S. performed and interpreted serologic evaluation and performed PCR-SSP genotyping; J.O. performed and interpreted Beadchip experiments; H.G.K. interpreted data and contributed to writing; F.M.M. provided resources for sequencing experiments, interpreted data, and contributed to writing; N.R.K. participated in the patient care and contributed to writing; N.L.C.L. initiated the study, participated in the patient care, collected samples, and contributed to the interpretation of data and to writing; D.S. interpreted data and contributed to writing; and W.A.F. supervised PCR-SSP genotyping experiments, interpreted data, and cowrote the manuscript.

Conflict-of-interest disclosure: J.O. was an employee of Progenika Biopharma, which developed Beadchip, one of the molecular blood group platforms used in the study. W.A.F. receives royalties and holds patents on RHD molecular genetics, participated in developing Bloodchip, and serves on the Scientific Advisory Board of Immucor. The remaining authors declare no competing financial interests.

The current affiliation for A.M. is Università di Roma “Sapienza” Dipartimento di BiotecnologieCellulari ed Ematologia, Via Rovigo, Roma, Italy. The current affiliation for J.O. is BioFortis, Columbia, MD.
RH genotyping in a sickle cell disease patient contributing to hematopoietic stem cell transplantation donor selection and management