High mortality from *Plasmodium falciparum* malaria in children living with sickle cell anemia on the coast of Kenya

Charlotte F. McAuley,1,2 Clare Webb,1,2 Julie Makani,1,3 Alexander Macharia,1 Sophie Uyoga,1 Daniel H. Opi,1 Carolyne Ndila,1 Antony Ngatia,1 John Anthony G. Scott,1,4 Kevin Marsh,1,4 and Thomas N. Williams1,2,4,5

1Centre for Geographic Medicine Research (Coast), Kilifi, Kenya; 2Department of Paediatrics, University of Oxford, Oxford, United Kingdom; 3Muhumbili University College of Health Sciences, Dar-es-Salaam, Tanzania; 4Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; and 5INDEPTH Network of Demographic Surveillance Sites, Accra, Ghana

Although malaria is widely considered a major cause of death in young children born with sickle cell anemia (SCA) in sub-Saharan Africa, this is poorly quantified. We attempted to investigate this question through 4 large case-control analyses involving 7164 children living on the coast of Kenya. SCA was associated with an increased risk of admission to hospital both with nonmalaria diseases in general (odds ratio [OR] = 4.17; 95% confidence interval [CI], 1.95-8.92; \(P < .001 \)) and with invasive bacterial diseases in particular (OR = 8.73; 95% CI, 4.51-16.89; \(P < .001 \)). We found no evidence for a strongly increased risk of either uncomplicated malaria (OR = 0.43; 95% CI, 0.09-2.10; \(P = .30 \)) or malaria complicated by a range of well-described clinical features of severity (OR = 0.80; 95% CI, 0.25-2.51; \(P = .70 \)) overall; nevertheless, mortality was considerably higher among SCA than non-SCA children hospitalized with malaria. Our findings highlight both the central role that malaria plays in the high early mortality seen in African children with SCA and the urgent need for better quantitative data. Meanwhile, our study confirms the importance of providing all children living with SCA in malaria-endemic areas with effective prophylaxis. (*Blood* 2010;116(10):1663-1668)

Introduction

The common causes of morbidity and mortality in children living with sickle cell anemia (SCA) in developed countries have been well documented through projects, such as the Cooperative Study of Sickle Cell Disease in the United States and the Jamaican Cohort study. Nevertheless, surprisingly little research has been conducted in Africa,1-3 where more than 230 000 children with SCA, approximately 80% of the global burden, are born every year.4 Although malaria is widely considered a major cause of death in African children with SCA,1,5-7 this assumption is supported by surprisingly few data. Most reports have involved small, hospital-based studies and have lacked control data that enable comparisons of risk to be made with non-SCA subjects.1 Perhaps the strongest evidence comes from the Garki project, conducted in northern Nigeria during the 1970s, which reported a nonsignificant trend toward higher survival of children with SCA in an area exposed to intensive malaria control.8 However, studies suggesting that malaria is an important cause of death in children with SCA are balanced by others that show the opposite: children with SCA might even be less susceptible to malaria than those without the disease.6,9-13

Determining the true risk of death from malaria in subjects with SCA is important for several reasons. From a policy perspective, documenting an association between SCA and malaria death would provide strong justification for early-life SCA screening and the targeted prescription of effective malaria prophylaxis. Conversely, if the risk of malaria-specific death was not elevated, alternative approaches to prophylaxis and treatment might be considered. Recently, we reported that malaria was a rare cause of morbidity in patients with confirmed SCA in both Dar-es-Salaam, Tanzania13 and in the Kilifi District on the coast of Kenya.11 Nevertheless, the diagnosis of SCA is often delayed until the disease becomes clinically manifest, and these studies could not have recorded malaria deaths in undiagnosed children. Here, we have approached this question using an alternative design. Instead of confining our study exclusively to subjects with an established diagnosis of SCA, we have taken as a starting point a representative sample of children presenting to hospital with a range of acute illnesses, including malaria. Admission blood samples collected from case children were tested retrospectively for Hemoglobin S (HbS) and their genotype frequencies compared with those of healthy controls recruited from the same community.

Methods

Ethics statement

The aims of the study were explained to the parents of all study participants who gave their written informed consent in accordance with the Declaration of Helsinki. The study was approved by the Kenya Medical Research Institute/National Ethical Review Committee.

Study area

The study was conducted in the Kilifi District on the coast of Kenya, one of the poorest districts nationwide where the economy is dominated by subsistence farming. Health facilities are limited and sick children are normally referred to Kilifi District Hospital (KDH), which acts as both a primary facility and a first-referral center for a population of more than 600 000. Facilities at the hospital include both a 50-bed general pediatric...
ward and a 10-bed high-dependency unit. Common health problems affecting children admitted to KDH include malaria, gastroenteritis, malnutrition, and lower respiratory tract infections. The prevalence of HbAS in the area surrounding KDH is 15%. Medical services for children with SCA are scarce in the Kilifi District: there is no program of antenatal or early life screening, and the only specialist clinic is in the KDH where only a small proportion of all anticipated cases are registered. As a result, only a small but unknown fraction of all children born with SCA in the study area receive specific antimalarial or antimicrobial prophylaxis. In 2000, we established a demographic surveillance system (the Kilifi Epi-DSS) in a defined area surrounding KDH, which we refer to as the study area. Approximately 80% of all children who are admitted to KDH are residents of this area, which includes 5 administrative divisions, covers a total of 891 km², and is home to more than 100,000 children younger than 14 years. A system of routine clinical surveillance has operated on the pediatric wards at KDH since 1989. Data are recorded on all admitted children, including their location of residence, details of a standardized clinical history and examination, admission and discharge diagnoses, and the results of routine blood tests, including a full blood count, blood culture, and blood film examination for malaria parasites. In addition, a sample of blood from each admitted child is routinely stored at −80°C. The current study was conducted retrospectively using data and samples collected through this framework.

Study participants

We studied the relationship between SCA and malaria in 2 groups of case patients. The first consisted of a random selection of 1087 children younger than 5 years who were residents of our study area and were admitted to the general pediatric ward at KDH with uncomplicated slide-positive Plasmodium falciparum malaria between January 1, 2000 and December 31, 2004. For the purpose of this report, a case of uncomplicated malaria was defined as a child admitted to the general ward at KDH with uncomplicated slide-positive malaria parasites in the peripheral blood, no clinical or laboratory features to support an alternative diagnosis and with no clinical signs of prostration (Blantyre coma score 3–4), coma (Blantyre coma score ≤ 2), or deep breathing. The second group included 1718 children younger than 5 years who were admitted from the study area to the high-dependency unit between September 1996 and February 2008 with malaria complicated by 1 or more of the following clinical features: prostration, coma, or deep breathing. To put our observations into context relative to other diseases not caused by malaria, we also studied 2 additional groups of case patients. The first included a random sample of 1008 children younger than 5 years of age who were admitted from the study area to the general pediatric ward during the same period as those admitted with uncomplicated malaria. All children in this case group had a negative blood test for malaria at the time of their admission and constituted a representative sample of nonmalaria diagnoses. The second consisted of 1872 children admitted between August 1998 and March 2008 with bacteremia defined by the growth of a pathogenic bacterium from a blood culture sample collected at admission. Controls were children younger than 5 years who were recruited by random sampling to studies conducted throughout the study area between September 1998 and November 2005 as described in detail previously.

Sampling and laboratory methods

Routine hematology, blood culture, and malaria parasite data were collected on all admitted children as described in detail previously. Case patients were typed for HbS using a single-tube polymerase chain reaction method on DNA extracted from stored blood samples (QIAGEN DNA Blood Mini Kit) and controls were typed by hemoglobin electrophoresis on cellulose acetate gels following standard methods. All cases of SCA that were diagnosed by electrophoresis were confirmed by polymerase chain reaction. Although we did not test formally for β-thalassemia and, as a result, we cannot exclude a diagnosis of HbS/β-thalassemia in some subjects, it is probable that β-thalassemia is rare in the study population and that most patients will have had sickle cell disease-SS. As a result, we have elected to use the term SCA rather than sickle cell disease throughout this paper.

Statistical methods

We determined the odds ratios (ORs) for SCA between each group of case patients and controls by both univariate and multivariable logistic regression analysis, adjusting for the declining prevalence of SCA with age. We compared proportions using the χ² or Cornfield exact test as appropriate and the means of normally distributed continuous data using the Student t tests. Nonparametric data were compared using the Mann-Whitney Rank Sum test. All analyses were conducted using STATA, Version 10.0.

Results

The sample flow and genotype results are summarized in Figure 1 and Table 1, respectively, and the clinical features of case patients, stratified by HbS genotype, are summarized in Table 2. Overall, of the severe malaria group, 468 of 1393 (33%) were prostrated, 620 (52%) were in coma, and 536 (41%) had signs of deep breathing. There were no significant differences in the distributions of these features between genotypic groups. Of those admitted with nonmalaria illnesses, the most common primary diagnoses at the time of discharge were lower respiratory tract infections (234; 31.4%), gastroenteritis (164; 22%), and malnutrition (61; 8.2%). There were no significant differences in the distributions of these diagnoses by genotype.

Overall, 218 of 1479 (14.7%) controls were heterozygous and 10 (0.7%) were homozygous for HbS (allele frequency = 0.08) and were in Hardy-Weinberg equilibrium. The prevalence of SCA decreased from 8 of 782 (1.0%) in children younger than 12 months to 2 of 697 (0.3%) in children 12 to 59 months of age. We therefore calculated the ORs for HbS genotypes for the 4 clinical case groups both with and without adjustments for age. Although we found no evidence of a strongly increased risk of either uncomplicated or severe P. falciparum malaria in children with SCA (OR = 0.48 and 0.80, respectively), we did find that a high proportion (6 of 7) of
those admitted with malaria who tested positive for SCA were severely anemic (Table 2) and, furthermore, that mortality was considerably higher in the SCA (4 of 7) than non-SCA groups (140 of 2193; P < .001; Table 2). SCA was significantly associated with a 4-fold increase in admission to hospital with nonmalaria illnesses (OR = 4.17) and a greater than 8-fold increase in bacteremia (OR = 8.73; Table 3). The ratio of SCA compared with HbAA children was significantly different across the 4 case groups (χ² 3 df = 107; P < .001). Because the time period for sample collection differed between the case conditions, we conducted a secondary analysis restricted only to cases collected during the 5-year period of January 1, 2000 to December 31, 2004. These results were not significantly different from the ORs reported here (data not shown). As expected, we found protective associations among children with HbAS against bacteremia (OR = 0.60), uncomplicated malaria (OR = 0.24), and severe malaria (OR = 0.12) and borderline evidence for protection against nonmalaria illnesses (OR = 0.78; Table 3).

Discussion
Each year, approximately 13 000 children are born with SCA in the north where, as a result of intensive research over the last 50 years,
their prognosis is constantly improving.21 In Africa, however, where more than 230 000 affected children are born each year,4 the picture is very different. The majority of these children die in early life before the diagnosis of SCA has ever been established,3,5,8,22 such that currently SCA is responsible for more than 6% of all deaths in African children younger than 5 years.4 This proportion is set to rise as governments strive to meet their Millennium Development Goals and all-cause under-5 mortality begins to fall.23 Nevertheless, developing appropriate strategies for the identification and management of these children is impossible without quality data on the common causes of morbidity and mortality in the African context.2

Table 3. Age-adjusted ORs for disease-specific admission by HbS genotype

<table>
<thead>
<tr>
<th>Case category</th>
<th>HbAA</th>
<th>HbAS</th>
<th>P</th>
<th>SCA</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplicated malaria</td>
<td>1</td>
<td>0.24 (0.17-0.36)</td>
<td><.001</td>
<td>0.43 (0.09-2.10)</td>
<td>.30</td>
</tr>
<tr>
<td>Severe malaria</td>
<td>1</td>
<td>0.12 (0.08-0.18)</td>
<td><.001</td>
<td>0.80 (0.25-2.51)</td>
<td>.70</td>
</tr>
<tr>
<td>Nonaemicillness</td>
<td>1</td>
<td>0.78 (0.60-1.01)</td>
<td>.066</td>
<td>4.17 (1.95-8.92)</td>
<td><.001</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>1</td>
<td>0.60 (0.48-0.76)</td>
<td><.001</td>
<td>8.73 (4.51-16.89)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Values are ORs (95% CI) compared with the reference group (HbAA) adjusted for age group (0-23 months, 24-59 months) by logistic regression. Case categories are as defined in “Study participants.” In a subanalysis restricted to bacteremia caused by the rapidly progressive condition Streptococcus pneumoniae, the OR for SCA in cases versus controls was 15.3 (95% CI, 7.3-35.1; P < .001).

As anticipated, we found that SCA was strongly associated with bacteremia, a diagnosis that was accompanied by an overall mortality of more than 20%. Exploring this in more detail elsewhere,30 we have estimated the annual incidence of bacteremia in African children with SCA,13 both suggest that severe anemia among African children with SCA is already anemic, and a sudden decline in hemoglobin from such a low baseline value could easily be catastrophic. The current study and an earlier study in which we also found that both severe anemia and death were significantly more common among parastemic than nonparastemic SCA patients presenting to hospital in Dar-es-Salaam,13 both suggest that malaria is probably an important cause of community death from anemia among African children with SCA. On the same basis, it is also probable that malaria was the precipitant in a high proportion of patients with SCA who presented with anemia in our “nonmalaria” grouping but that parasites were present at such low densities that they were not detected through routine microscopy.

Taken together, these considerations suggest that it is highly probable that our failure to detect a strong overall association between SCA and malaria in our current study relates to study design. Nevertheless, from a biologic perspective, it remains possible that malaria is not such a major cause of morbidity in children with SCA as is commonly thought. Carriers of Hbs are strongly protected from all forms of clinical malaria7,38,39 through mechanisms that probably include the premature removal by the spleen of malaria-infected red blood cells,40,41 and in vivo, the degree of protection in carriers is correlated with Hbs, being virtually complete in those with the highest intracellular concentrations.14 Moreover, in a number of in vitro studies, the mechanisms that have been proposed as potential explanations for the malaria protection afforded by Hbs have been more pronounced in homozygotes,40,41.44-46 For these reasons, it is still possible that children with SCA enjoy a greater degree of innate malaria protection than heterozygotes, an interpretation that is supported by a number of studies that have noted both a reduced prevalence6,10,28 and a reduced incidence6,11 of malaria in children with SCA.
Nevertheless, our study was too small to find anything other than a very large protective effect: for example, given a control prevalence of 0.06 and more than 1700 cases of severe malaria, our study was 80% powered to show an OR of 0.1 at the .05 significance level, an effect that seems implausibly large. More importantly, even if the overall incidence of clinical malaria were lower in SCA than non-SCA children, any advantage would be more than offset by the massively increased risk of death seen in such children when they do develop the disease.

Given the huge burden of SCA in Africa, the continuing lack of clear quantitative data regarding the relative importance of malaria as a cause of morbidity and mortality more than 50 years after this question was first debated\(^{19,47-49}\) is unhelpful. As the Global Burden of Disease Study enters its first major revision,\(^{50}\) the causes of death in African children with SCA remain poorly documented and the lack of data make it impossible to evaluate the relative benefits of various interventions. Such data are critical if African governments are to make informed decisions regarding alternative approaches. At one extreme, the introduction of neonatal screening for SCA, which allows services to be targeted toward affected children, has been explored in a number of countries.\(^{51-53}\) However, this is clearly an additional value of targeted malaria prophylaxis becomes a critical question for health planners evaluating the potential benefits of screening.

The current study highlights the urgent need for better data regarding the overall role that malaria plays in the ill health and death of African children with SCA. Given the importance of this question, a definitive and well-powered intervention study seems long overdue. In the mean time, the high risk of death seen in children with SCA admitted to hospital with malaria in our study underscores how important it is that effective prophylaxis is made freely available to all children living with SCA in malaria-endemic countries.

Acknowledgments
The authors thank the field, laboratory, medical, and nursing staff of the Centre for Geographic Medicine Research–Coast for their help in conducting this study; Charles Newton, Jay Berkley, and Bob Snow for helpful discussions; Greg Fegan for statistical support; and a number of anonymous reviewers for their help in revisions of this manuscript.

This work was supported by the Wellcome Trust, United Kingdom (grant 076934; T.N.W.) and (grant 077092; K.M.) and the European Union Network 6 BioMalpar Consortium Network of Excellence. This paper is published with the permission of the Director of Kenya Medical Research Institute.

Authorship
Contribution: C.F.M. performed the research, analyzed the data, and wrote the first draft of the paper; C.W., J.M., A.M., S.U., D.H.O., A.N., and K.M. helped perform the research and commented on draft manuscripts; C.N. prepared the data, helped with data analysis, and commented on draft manuscripts; J.A.G.S. helped with the interpretation and analysis of the data and commented on draft manuscripts; and T.N.W. designed the research, wrote the final draft of the paper, had full access to all of the data in the study, and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Thomas N. Williams, KEMRI/Wellcome Trust Programme, Centre for Geographic Medicine Research-Coast, PO Box 230, Kilifi, Kenya; e-mail: twilliams@kilifi.kemri-wellcome.org.

References
High mortality from *Plasmodium falciparum* malaria in children living with sickle cell anemia on the coast of Kenya

Charlotte F. McAuley, Clare Webb, Julie Makani, Alexander Macharia, Sophie Uyoga, Daniel H. Opi, Carolyne Ndila, Antony Ngatia, John Anthony G. Scott, Kevin Marsh and Thomas N. Williams