Activated protein C cofactor function of protein S: a critical role for Asp95 in the EGF1-like domain

Helena M. Andersson,¹ Márcia J. Arantes,² James T. B. Crawley,¹ Brenda M. Luken,¹ Sinh Tran,³ Björn Dahlbäck,³ David A. Lane,¹ and Suely M. Rezende⁴

¹Department of Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; ²Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Faculdade de Medicina, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; ³Department of Laboratory Medicine, Division of Clinical Chemistry, The Wallenberg Laboratory, Lund University, Malmö, Sweden; and ⁴Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

Protein S has an established role in the protein C anticoagulant pathway, where it enhances the factor Va (FVa) and factor VIIIa (FVIIIa) inactivating properties. In the absence of protein S, the inactivation of activated factors V (FVa) and VIII (FVIIIa) is denoted. Protein S also has an APC-independent role that has recently been attributed to its ability to enhance tissue factor pathway inhibitor (TFPI). Protein S has an important role in vivo, as it is shown clinically by infants with complete deficiency, who suffer from venous thromboembolism.

Introduction

Protein S, a vitamin K–dependent plasma anticoagulant protein, functions as an enhancing cofactor to activated protein C (APC) in the inactivation of activated factors V (FVa) and VIII (FVIIIa). Protein S also has an APC-independent role that has recently been attributed to its ability to enhance tissue factor pathway inhibitor (TFPI). Protein S has an important role in vivo, as it is shown clinically by infants with complete deficiency, who suffer from venous thromboembolism.

Protein S binds phospholipids and helps to localize APC to the membrane surface, in proximity to FVa and FVIIIa. In doing so, rather than the preferential cleavage at Arg506 of FVa by APC, Arg306 is then favored, with cleavage enhanced approximately 20-fold. Although this effect has generally been accepted to be due to protein S repositioning of the active site of APC, this has recently been questioned. Cleavage at Arg506 and Arg306 fully inactivates FVa, thereby efficiently down-regulating coagulation. APC also inactivates FVIIIa by cleaving first at Arg336 and thereafter at Arg562. In the presence of protein S, it has been shown that the efficiency of cleavage after Arg336 by APC is enhanced approximately 3-fold.

Protein S is a 635–amino acid glycoprotein, circulating at a plasma concentration of approximately 350nM. It is composed of a high-affinity complex with sex hormone–binding globulin (SHBG)–like domain (amino acids 243-635). Ap–protein S–deficient plasma. Of 27 variants tested initially, only one, protein S D95A (within the EGF1 domain), was largely devoid of functional APC cofactor activity. Protein S D95A was, however, γ-carboxylated and bound phospholipids with an apparent dissociation constant (Kdapp) similar to that of wild-type (WT) protein S. In a purified assay using FVa R506Q/R679Q, purified protein S D95A was shown to have greatly reduced ability to enhance APC-induced cleavage of FVa Arg306. It is concluded that residue Asp95 within EGF1 is critical for APC cofactor function of protein S and could define a principal functional interaction site for APC.

© 2010 by The American Society of Hematology

Presented in part in abstract form at the International Society on Thrombosis and Haemostasis, Boston, MA, July 14, 2009; at the British Society for Haemostasis and Thrombosis, Newcastle, United Kingdom, October 7, 2009; and at the Congresso Brasileiro de Hematologia e Hemoterapia, Florianópolis, Brazil, November 11, 2009.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

© 2010 by The American Society of Hematology
Additional studies have focused on the possible role of TSR and EGF domains. Several studies have reported that cleavage in the TSR of protein S affects its APC cofactor activity.20,22 Dahlbäck et al23 and Giri et al24 used domain-specific monoclonal antibodies directed against protein S and their Fab fragments and suggested that the TSR and EGF1 domains may be involved in APC cofactor activity. The TSR and EGF1 domains of protein S have also been reported to be responsible for species specificity.25 Using EGF-like, modules Stenberg et al concluded the EGF1 module to be crucial for interaction with APC.26 Hackeng et al demonstrated that the isolated EGF1 domain of protein S could inhibit full-length protein S anticoagulant enhancing function against APC: direct binding of the domain to APC was also demonstrated.27 Mille-Baker et al prepared EGF2 domain deletion and substitution mutants of protein S and demonstrated reduced anticoagulant activity, in the presence of normal phospholipid binding.28 Collectively, these investigators have suggested Gla, TSR, EGF1, and EGF2 domains may each contain recognition elements on protein S needed for APC cofactor function.

Because these diverse approaches have not yet fully defined the functional interaction site(s) on protein S for APC, we have investigated the role of individual and groups of residue substitutions in Gla, TSR, EGF1, and EGF2 domains of protein S. Using a library of 27 protein S variants, we performed thrombin generation assays in protein S–deficient plasma to which APC and these protein S variants were added. We report here that EGF1 has a critical role in anticoagulant function of protein S, provided specifically by Asp95, the mutation of which almost completely abolishes APC cofactor activity.

Methods

Generation and expression of protein S and its variants

A previous reported pcDNA6/protein S vector containing the cDNA for wild-type (WT) protein S29 was used to generate recombinant full-length WT protein S and as a template to produce protein S mutants by polymerase chain reaction site-directed mutagenesis (QuikChange XL Site-Directed Mutagenesis Kit; Stratagene) using mutagenic oligonucleotide primers (Thermo Scientific). Single and composite residue variants produced are shown in Table 1. Stably transfected cells were selected with 5 μg/mL Blasticidin-HCl (Invitrogen) for 4 weeks. Protein S was expressed in OptiMem I (Invitrogen) with 10 μg/mL vitamin K (Roche Products Ltd) for 3 days. Media containing protein S was harvested, centrifuged, filtered, dialyzed in 20 mM Tris (tris(hydroxymethyl)aminomethane)–HCl (pH 7.5), 140 mM NaCl (TBS), and concentrated, as required. All variants were successfully expressed into the media and could be readily detected by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blotting and by enzyme-linked immunosorbent assay (ELISA). We have previously reported that the protein S expressed in this way is functionally active in cofactor assays and can be fully γ-carboxylated.23,31

<table>
<thead>
<tr>
<th>GLA1</th>
<th>D38N/V46G/K97Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLA2/Face2</td>
<td>L21T/N23S/K24Y/R28F/D34S/Y41W/L45T</td>
</tr>
<tr>
<td>TSR1</td>
<td>R49Q/R60Q/D68N/R70Q/D78N</td>
</tr>
</tbody>
</table>

Table 1. Protein S variants generated by site-directed mutagenesis

Table 1. Protein S variants generated by site-directed mutagenesis

Purification of protein S

WT protein S and selected variants were either partially purified by barium citrate precipitation as previously described25 for use in phospholipid-binding analysis or extensively purified by chromatography for use in AP-dependent functional assays. Chromatography was performed using an ÄKTA purifier UPC-10 and the Unicorn 5.11 (Build 407) software, strategy Version 1.00 (both from GE Healthcare). Concentrated and dialyzed conditioned media containing protein S supplemented with 4 mM EDTA (ethylenediaminetetraacetic acid) was applied to an anionic Q Sepharose Fast Flow (5 mL of Hitrap QFF) column (GE Healthcare) equilibrated with 20 mM Tris-HCl (pH 7.4), 100 mM NaCl, 4 mM EDTA, and 5 mM benzamidine-HCl (Sigma-Aldrich). The column was washed with 20 mM Tris-HCl (pH 7.4), 100 mM NaCl, and 5 mM benzamidine-HCl. Protein S was eluted from the column with 20 mM Tris-HCl (pH 7.4), 0.5 mM NaCl, and 5 mM benzamidine-HCl.

Two volumes of 7.5 mM CaCl2 were added to the elution fraction from the anionic QFF column to lower the ionic strength, before injecting the fraction onto an affinity column prepared by coupling 2.5 mg of monoclonal antibody against protein S, MK21, to a 1-mL Hitrap NHS HP column (GE Healthcare), according to the manufacturer’s instructions. All monoclonal antibodies against protein S used in this study are described in the paper of Dahlbäck et al.23 The protein S–containing fraction was applied to the equilibrated column (equilibration buffer: 50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 2 mM CaCl2). After washing with 1 mM NaCl, the ionic strength was lowered by passing additional 3 column volumes of equilibration buffer over the column prior to elution of protein S with 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 10 mM EDTA. An excess of CaCl2 was present in the tubes collecting the eluted protein S to neutralize the EDTA. The column was regenerated by stripping with 0.1 M glycine-HCl (pH 2.7). Purified protein S was dialyzed in TBS and concentrated, as required.

Determination of protein S concentration by ELISA

Protein S concentrations in media were determined by an in-house ELISA. Polyclonal rabbit anti–protein S antibody (1 μg/mL; DAKO) was immobilized in a 96-well Nunc Maxisorp microplate in 50 mM sodium carbonate buffer (pH 9.6) at 4°C overnight. Washing steps were performed in triplicate with 250 μL of phosphate-buffered saline, 0.1% Tween between each step. Wells were blocked with phosphate-buffered saline containing 3% bovine serum albumin (BSA; Sigma-Aldrich) for 2 hours. Bound protein S was detected by a mouse monoclonal antibody directed against the EGF3-4 domain of protein S, MK55, followed by a horseradish peroxidase (HRP)–conjugated goat anti–mouse antibody (DAKO). The plate was developed with 100 μL/well chromogenic substrate O-phenylenediamine dihydrochloride; OPD (Sigma-Aldrich), the enzymatic reaction was stopped with 50 μL/well 2M H2SO4, and the absorbance was read at 492 nm.

SDS-PAGE and Western blotting

SDS-PAGE and Western blotting were performed using standard techniques. Briefly, 4% to 12% or 10% precast NuPAGE Novex Bis-Tris gels (Invitrogen) were used. For silver staining and Western blotting, standard techniques were used. The SeeBlue-pretained marker from Invitrogen was
used. Protein S was detected either by a polyclonal rabbit anti–protein S antibody followed by an HRP-conjugated goat anti–rabbit antibody or by a monoclonal mouse antibody recognizing only γ-carboxylated Glu residues (American Diagnostica Inc), followed by a goat anti–mouse HRP-conjugated antibody (DAKO).

Phospholipid vesicle preparation

Phospholipids mixtures (Avanti Polar Lipids Inc) in chloroform were prepared and the chloroform was evaporated under a nitrogen stream. The phospholipids were resuspended in TBS or 25 mM N-2-hydroxyethylpipera-

Binding of protein S to phospholipids

Phospholipid vesicles (DOPS/DOPC/DOPE, 20:60:20), 25 μg/mL, were coated as described for the ELISA. Washing steps were performed in triplicate with 250 μL/well TBS, 5 mM CaCl₂, 0.3% BSA between each step and incubations were carried out in a plate shaker at 37°C. Wells were blocked with TBS, 5 mM CaCl₂, 3% BSA for 2 hours. Protein S partially purified by barium citrate precipitation, 0 to 120 nM, was incubated in the wells in duplicate for 2 hours and was detected with an HRP-conjugated anti–protein S antibody for 45 minutes (Affinity Biologicals). Data were analyzed with GraphPad Prism 4.03 and curves were fitted to a one-site binding hyperbola.

Binding of protein S to domain-specific monoclonal antibodies

Domain-specific monoclonal antibodies MK21 (Gla domain), MK54 (EGF1 domain), and MK61 (SHBG domain), 1 μg/mL, were coated as described for the ELISA. Washing steps were performed in triplicate with 250 μL of TBS, 3 mM CaCl₂, 0.1% Tween between each step and incubations were carried out in a plate shaker at 37°C for 1 hour unless stated otherwise. Wells were blocked with 200 μL of TBS, 3 mM CaCl₂, 3% BSA for 2 hours. Protein S, 0 to 160 nM was incubated in the plate for 1 hour and was detected by a rabbit polyclonal antibody against protein S followed by a goat anti–rabbit HRP-conjugated antibody.

Thrombin generation assay by calibrated automated thrombography

Thrombin generation was assessed using a Fluoroscan Ascent FL Plate Reader (Thermo Lab System) in combination with Thrombinoscope Reader (Thermo Lab System) in combination with Thrombinoscope thrombography (American Diagnostica Inc), followed by a goat anti–rabbit HRP-conjugated antibody. Data were analyzed with GraphPad Prism 4.03 and curves were fitted to a one-site binding hyperbola.

Prothrombinase assay

An aliquot, 25 μL, of the FVa inactivation reaction was incubated with phospholipid vesicles (PS/PC 10:90) and FXa in the presence of CaCl₂. The reaction was initiated by the addition of prothrombin, in a final volume of 125 μL. The buffer contained HN and 0.5 mg/mL ovalbumin. Final concentrations were 50 μM PS/PC, 5 nM FXa, and 0.5 μM prothrombin. The solution was incubated at 37°C for 2 minutes and the reaction was terminated by an 8-fold dilution in 50 mM Tris-HCl (pH 7.9), 100 mM NaCl, 20 mM EDTA, 1% PEG 6000. The amount of thrombin generated was measured by cleavage of its chromogenic substrate S-2238 (Chromogenix) at 405 nm for 15 minutes at 30-second intervals.

Results

Screening of protein S mutants for APC cofactor activity in plasma

Concentrated and dialyzed conditioned media samples containing WT protein S and the 27 protein S variants were normalized with respect to protein S concentration, using the protein S–specific ELISA. Western blotting revealed single-band protein S in all samples (nonreducing conditions).

To assess the APC cofactor activity of protein S, thrombin generation was assessed by calibrated automated thrombography (CAT) using protein S–deficient plasma supplemented with recombinant WT protein S and its variants in conditioned media. Under the conditions of the assay, APC (0-10 nM) did not affect peak, endogenous thrombin potential (ETP), lag time, or time to peak, when coagulation was initiated in protein S–deficient plasma (Figure 1A). Concentrated conditioned media from cells not expressing protein S had no influence on thrombin generation (data not shown). When 120 nM WT protein S was progressively introduced into the assay, dose-dependent effects were observed,
primarily on reduction of the peak and of ETP values (Figure 1B). The extent of inhibition of peak and ETP was dependent both on the concentration of APC and protein S. The higher the APC concentration, the less protein S was necessary to completely inhibit thrombin generation. In these experimental conditions, 10nM APC and 120nM protein S reduced both the peak and ETP by approximately 84%. To verify that those effects were a direct consequence of APC cofactor activity of protein S, polyclonal antibodies against either protein S (Figure 1C) or protein C (Figure 1D) were used. These inhibited the anticoagulant APC–protein S effect.

The screening of the protein S variants for their APC cofactor activity was performed at high concentration of APC (16nM) to achieve almost complete inhibition of thrombin generation with 100nM WT protein S (Figure 2). These screening experiments identified a single point mutant in EGF1 of protein S, D95A, which had a severely impaired APC cofactor activity. Under all conditions used, the reduction in cofactor activity was greater than that observed for the previously reported variant with 7 amino acids exchanged (prothrombin residue swap), GLA2/Face2.

Evaluation of the importance of Asp95 for APC cofactor activity of protein S in plasma

To further evaluate the APC cofactor activity of protein S D95A, a titration (0-120nM) of the mutant (Figure 3B) was performed alongside WT protein S (Figure 3A), using 9nM APC. The protein S D95A had a severely impaired APC cofactor activity, a finding replicated when different concentrations of APC were used (results not shown). In these experimental conditions, whereas 120nM WT protein S reduced peak and ETP by approximately 80%, 120nM protein S D95A reduced peak and ETP by only approximately 10%. To confirm the importance of Asp95 in protein S APC cofactor function, Asp95 was also substituted with Asn, rather than Ala. Asn is structurally more similar to Asp than Ala and it can also be β-hydroxylated. When the protein S D95N mutant was titrated, it was observed that it also had severely reduced APC cofactor activity (Figure 3C) with 120nM D95N inhibiting peak and ETP by approximately 20%. All results in Figure 3A through C were conducted with protein S and its variants contained in concentrated conditioned media. To confirm that they were not influenced by the media, WT protein S and the protein S D95A variant were purified to homogeneity using anion exchange and affinity chromatography (see Figure 3D inset for SDS-PAGE gel visualized with silver staining). Addition of 90nM purified WT protein S to protein S–deficient plasma in the presence of 9nM APC appreciably attenuated thrombin generation (Figure 3D), replicating the findings with WT protein S in conditioned media. Moreover, addition

Figure 1. Effect of APC and protein S on thrombin generation. Thrombin generation was performed in protein S–deficient plasma with 100nM inhibitory antibodies against TFPI. Up to 10nM APC had no effect on thrombin generation in the absence of protein S. All concentrations generate lines that are superimposable (A). After addition of 120nM protein S (at 0-10nM APC), an APC dose-dependent effect was observed (B). The top single line represents 0 to 10nM APC in the absence of protein S. Protein S in the presence of no or 2.5nM APC generated lines that were superimposable. Conditions used are noted adjacent to the peaks to which they refer. The anticoagulant effect of 10nM APC and 120nM protein S was inhibited by polyclonal antibodies against protein S (C) or against protein C (D). PS indicates protein S; PC, protein C. Representative experiments are shown (n = 3).

Figure 2. Screening of protein S variants for APC cofactor activity. The APC cofactor activity of protein S was evaluated at 16nM APC and 100nM protein S by CAT. The peak height in the absence of protein S was set to 100%. A high concentration of APC, leading to almost complete inhibition of thrombin generation with 100nM WT protein S, was chosen specifically for screening purposes as this allows widening of the assay window at which mutants with reduced APC cofactor activity are visualized. Results were confirmed by evaluating protein S (at 60 and 90nM) cofactor activity toward 4 or 9nM APC.
of 90nM purified protein S D95A to APC produced only a minimal effect on thrombin generation (Figure 3D).

When analyzing a model of Gla-TSR-EGF1 domains of protein S, 2 residues with a solvent-exposed R residue in close proximity to that of Asp95 were identified, Asp78 and Gln79. These were also mutated to alanine and expressed. When protein S D78A and Q79A were analyzed in the thrombin generation assay alongside WT protein S, a severely reduced APC cofactor activity was also observed (Figure 3E). This further confirms the importance of this region of EGF1 in APC cofactor activity of protein S.

Dose-response experiments of WT protein S, protein S D95A, and protein S D95N, shown in Figure 3F, confirm reduced APC cofactor function of these variants.

Phospholipid binding of WT protein S and protein S D95A

As phospholipid binding is a prerequisite for protein S function, the binding of WT protein S and of protein S D95A to phospholipids was evaluated. Partially purified (using barium citrate precipitation) protein S, 0 to 120nM, was incubated for 2 hours on a plate coated with 25 μg/mL phospholipids and was detected by an HRP-conjugated antibody against protein S. As shown in Figure 4, both WT protein S and protein S D95A were able to bind phospholipids, with apparent dissociation constant (Kdapp) of 5.69 plus or minus 1.24 and 9.54 plus or minus 2.26nM, respectively (Table 2). Kdapp values were analyzed by the Mann-Whitney test and found not to be statistically different (P > .05). Binding was observed in the presence of Ca2+, but not in the presence of EDTA or in the absence of phospholipids, as expected. These

Figure 3. Effect of WT protein S, D95A, D95N, D78A, and Q79A variants on thrombin generation. Thrombin generation was measured in protein S–deficient plasma supplemented with 9nM APC, 100nM antibodies against TFPI, and 0 to 120nM WT protein S (A), protein S D95A (B), protein S D95N (C), or 90nM purified WT (dashed line) or purified protein S D95A (dotted line; D). Protein S concentrations are positioned adjacent to the peaks to which they refer. The cofactor activity of 60nM WT protein S and protein S variants D95A, D78A, and Q79A was compared at 9nM APC (E). Typical experiments are shown (n = 3). Whereas the cofactor activity of WT protein S is highly dependent on the APC concentration used (Figure 1B), that of protein S D95A is not, explaining the difference in fold activity between WT protein S and protein S D95A in Figures 2 and 3. Dose-response data from titrations with WT protein S, protein S D95A, and protein S D95N in the presence of 9nM APC are shown in panel F (data are expressed as mean ± SD of 2 independent experiments performed in duplicate). Inset in panel B shows recognition of WT protein S and protein S D95A in media by polyclonal antibodies and a monoclonal antibody recognizing only γ-carboxylated Gla domains. Inset in panel D shows the SeeBlue-prestained marker, plasma-purified protein S from Enzyme Research Laboratories Ltd (lane 1), purified recombinant WT protein S (lane 2), and purified protein S D95A (lane 3) visualized with silver staining.

Figure 4. Binding of protein S to phospholipid surfaces. Protein S (0-120nM) was incubated in a plate coated with 25 μg/mL phospholipids. Bound protein S was detected with an HRP-conjugated polyclonal antibody against protein S. A representative experiment is shown. The apparent Kd values, 5.69 ± 1.24 and 9.54 ± 2.26nM for WT protein S and protein S D95A, respectively, were obtained by calculating the mean ± SD of 3 independent experiments performed in duplicate. PL indicates phospholipids.
findings are broadly consistent with previously reported Kd values for protein S binding to phospholipid surfaces.17-19,36,37 Our results suggest the loss of APC cofactor activity observed for protein S D95A is not due to loss of binding to phospholipid surfaces.

Binding to domain-specific monoclonal antibodies

Binding of protein S to conformational domain-specific antibodies was evaluated to assess the integrity of the domain structure and folding. Protein S in concentrated conditioned media was incubated in a plate coated with monoclonal antibodies recognizing either the Gla domain (MK21), the EGF1 domain (MK54), or the C-terminal SHBG domain (MK61). Bound protein S was detected with polyclonal antibodies. Binding curves were fitted with a one-site binding equation, and the Kd\textsubscript{app} values were obtained. Kd\textsubscript{app} values were analyzed by the Mann-Whitney test and were found not to be statistically different (P > .05). Table 2 represents the mean plus or minus SD Kd\textsubscript{app} values of 3 independent experiments performed in duplicate. The results suggest that mutation of Asp95 does not result in a significant change in the domain structure of protein S.

Protein S enhancement of APC-mediated cleavage of FVAs at Arg306

The FVa variant, R506Q/R679Q, was used to evaluate protein S–enhanced APC-mediated cleavage at Arg306 in FVAs. FVa inactivation was performed in the presence or absence of 0.5nM APC and a titration of purified protein S (0-100nM) was performed. After 10 minutes, the remaining FVa activity was measured in the prothrombinase assay. WT protein S efficiently enhanced APC-mediated cleavage at Arg306 of FVa, in contrast to the D95A mutant (Figure 5A).

To quantify the rate of cleavage at FVa Arg306 in the presence and absence of protein S, time course experiments were performed (Figure 5B). In the absence of protein S, or in the presence of protein S D95A, 3nM APC was used and aliquots were quenched at different time points (0-20 minutes). In the presence of WT protein S, the APC concentration was lowered to 0.5nM, as APC is efficiently enhanced by protein S. The remaining FVa activity at all time points was measured in the prothrombinase assay. Using the FVa inactivation curves obtained, the apparent pseudo–first-order rate constants were calculated and corrected for the APC concentrations used. Under these experimental conditions, protein S had no effect on FVa activity in the absence of APC (data not shown). APC-mediated cleavage at FVa Arg306 was enhanced by WT protein S by 13.9-fold plus or minus 3.6-fold, whereas protein S D95A was only able to enhance APC by 1.8-fold plus or minus 0.4-fold.

Discussion

We initially constructed and expressed 27 protein S variants with mutations in the Gla, TSR, EGF1, and EGF2 domains and evaluated their ability to enhance APC-mediated anticoagulant activity in plasma. The anticoagulant function of these 27 variants, and the subsequently expressed variants D78A, D79A, and D95N, were assessed by a thrombin generation assay, the specificity of which was demonstrated using polyclonal antibodies against either protein S or protein C that completely inhibited the anticoagulant response observed when adding protein S in the presence of APC. The advantage of the thrombin generation assay conducted in plasma is that it shows very clearly how APC is heavily dependent on protein S.38 In the absence of protein S, 10nM APC has no effect on thrombin generation. In contrast, in the presence of protein S, maximal anticoagulant effects with near ablation of thrombin generation are obtainable with APC concentrations less than 10nM.

Our initial screening results identified 2 protein S variants with appreciable reduction in APC cofactor function. These were the already reported GLA2/Face2 variant (a 7-residue composite mutant in the Gla domain) and the novel D95A point variant in the EGF1 domain. The former variant, reported by Saller et al, retains binding to phospholipids and yet has appreciably reduced APC cofactor activity.19 It is suggested that the 7 residues substituted in this variant collectively present a face of the Gla domain to APC and form a potential contact region. It was selected for investigation here because it is a well-characterized protein S variant with a 4-fold lower affinity to phospholipids and yet has appreciably reduced APC cofactor function.19 The latter variant, protein S D95A, was chosen because it was not due to loss of binding to phospholipid surfaces.

Protein S enhancement of APC-mediated cleavage of FVa at Arg306

The FVa variant, R506Q/R679Q, was used to evaluate protein S–enhanced APC-mediated cleavage at Arg306 in FVAs. FVa inactivation was performed in the presence or absence of 0.5nM APC and a titration of purified protein S (0-100nM) was performed. After 10 minutes, the remaining FVa activity was measured in the prothrombinase assay. WT protein S efficiently enhanced APC-mediated cleavage at Arg306 of FVa, in contrast to the D95A mutant (Figure 5A).

To quantify the rate of cleavage at FVa Arg306 in the presence and absence of protein S, time course experiments were performed (Figure 5B). In the absence of protein S, or in the presence of protein S D95A, 3nM APC was used and aliquots were quenched at different time points (0-20 minutes). In the presence of WT protein S, the APC concentration was lowered to 0.5nM, as APC is efficiently enhanced by protein S. The remaining FVa activity at all time points was measured in the prothrombinase assay. Using the FVa inactivation curves obtained, the apparent pseudo–first-order rate constants were calculated and corrected for the APC concentrations used. Under these experimental conditions, protein S had no effect on FVa activity in the absence of APC (data not shown). APC-mediated cleavage at FVa Arg306 was enhanced by WT protein S by 13.9-fold plus or minus 3.6-fold, whereas protein S D95A was only able to enhance APC by 1.8-fold plus or minus 0.4-fold.

Discussion

We initially constructed and expressed 27 protein S variants with mutations in the Gla, TSR, EGF1, and EGF2 domains and evaluated their ability to enhance APC-mediated anticoagulant activity in plasma. The anticoagulant function of these 27 variants, and the subsequently expressed variants D78A, D79A, and D95N, were assessed by a thrombin generation assay, the specificity of which was demonstrated using polyclonal antibodies against either protein S or protein C that completely inhibited the anticoagulant response observed when adding protein S in the presence of APC. The advantage of the thrombin generation assay conducted in plasma is that it shows very clearly how APC is heavily dependent on protein S.38 In the absence of protein S, 10nM APC has no effect on thrombin generation. In contrast, in the presence of protein S, maximal anticoagulant effects with near ablation of thrombin generation are obtainable with APC concentrations less than 10nM.

Our initial screening results identified 2 protein S variants with appreciable reduction in APC cofactor function. These were the already reported GLA2/Face2 variant (a 7-residue composite mutant in the Gla domain) and the novel D95A point variant in the EGF1 domain. The former variant, reported by Saller et al, retains binding to phospholipids and yet has appreciably reduced APC cofactor activity.19 It is suggested that the 7 residues substituted in this variant collectively present a face of the Gla domain to APC and form a potential contact region. It was selected for investigation here because it is a well-characterized protein S variant with a 4-fold lower affinity to phospholipids and yet has appreciably reduced APC cofactor function.19 The latter variant, protein S D95A, was chosen because it was not due to loss of binding to phospholipid surfaces.

Protein S enhancement of APC-mediated cleavage of FVa at Arg306

The FVa variant, R506Q/R679Q, was used to evaluate protein S–enhanced APC-mediated cleavage at Arg306 in FVAs. FVa inactivation was performed in the presence or absence of 0.5nM APC and a titration of purified protein S (0-100nM) was performed. After 10 minutes, the remaining FVa activity was measured in the prothrombinase assay. WT protein S efficiently enhanced APC-mediated cleavage at Arg306 of FVa, in contrast to the D95A mutant (Figure 5A).

To quantify the rate of cleavage at FVa Arg306 in the presence and absence of protein S, time course experiments were performed (Figure 5B). In the absence of protein S, or in the presence of protein S D95A, 3nM APC was used and aliquots were quenched at different time points (0-20 minutes). In the presence of WT protein S, the APC concentration was lowered to 0.5nM, as APC is efficiently enhanced by protein S. The remaining FVa activity at all time points was measured in the prothrombinase assay. Using the FVa inactivation curves obtained, the apparent pseudo–first-order rate constants were calculated and corrected for the APC concentrations used. Under these experimental conditions, protein S had no effect on FVa activity in the absence of APC (data not shown). APC-mediated cleavage at FVa Arg306 was enhanced by WT protein S by 13.9-fold plus or minus 3.6-fold, whereas protein S D95A was only able to enhance APC by 1.8-fold plus or minus 0.4-fold.

Discussion

We initially constructed and expressed 27 protein S variants with mutations in the Gla, TSR, EGF1, and EGF2 domains and evaluated their ability to enhance APC-mediated anticoagulant activity in plasma. The anticoagulant function of these 27 variants, and the subsequently expressed variants D78A, D79A, and D95N, were assessed by a thrombin generation assay, the specificity of which was demonstrated using polyclonal antibodies against either protein S or protein C that completely inhibited the anticoagulant response observed when adding protein S in the presence of APC. The advantage of the thrombin generation assay conducted in plasma is that it shows very clearly how APC is heavily dependent on protein S.38 In the absence of protein S, 10nM APC has no effect on thrombin generation. In contrast, in the presence of protein S, maximal anticoagulant effects with near ablation of thrombin generation are obtainable with APC concentrations less than 10nM.

Our initial screening results identified 2 protein S variants with appreciable reduction in APC cofactor function. These were the already reported GLA2/Face2 variant (a 7-residue composite mutant in the Gla domain) and the novel D95A point variant in the EGF1 domain. The former variant, reported by Saller et al, retains binding to phospholipids and yet has appreciably reduced APC cofactor activity.19 It is suggested that the 7 residues substituted in this variant collectively present a face of the Gla domain to APC and form a potential contact region. It was selected for investigation here because it is a well-characterized protein S variant with a 4-fold lower affinity to phospholipids and yet has appreciably reduced APC cofactor function.19 The latter variant, protein S D95A, was chosen because it was not due to loss of binding to phospholipid surfaces.
is structurally similar to Asp, can be a binding motif. We therefore mutated Asp95 to Asn rather than Ala. Asn was observed in the APC-mediated inactivation of WT-FVa.39 In addition, at out that defective APC cofactor activity of protein S T103N was not of protein S T103A in the CAT assay. It is, however, important to point that we could not observe any significant reduction in APC cofactor activity to multimerize upon purification.42,43 Accordingly, we have performed APC cofactor assays with unpurified protein S in concentrated conditioned media, had an appreciable reduction in APC cofactor activity of the protein S D95A variant, purified or in concentrated conditioned media, had an appreciable reduction in APC cofactor activity compared with the respective WT protein S preparation. Although it has not been formally assessed, in all comparison experiments carried out, the protein S D95A variant had less APC cofactor than the GLA2/Face2 variant. This suggests that Asp95 in protein S may occupy a pivotal position with respect to its interaction with APC. The importance of Asp95 in APC cofactor activity was further confirmed by the severely reduced activity observed when mutating to alanine the 2 residues in close proximity to Asp95, Asp78, and Gln79. Asp78, Gln79, and Asp95 are conserved across species with the exception of Asp78, which is replaced by the structurally similar Asn78 in birds. Using a working model of the Gla-TSR-EGF1 domains of protein S, we demonstrate the likely proximal spatial location of these 3 residues (Figure 6) and their relationship to GLA2/Face2 residues.

We have investigated the mechanism of reduction of activity of protein S Asp95 variants. Whereas EGF1 of protein S has not been shown to contain a calcium-binding site (in contrast to EGF2, EGF3, and EGF4),44 Asp95 could be part of a partially conserved calcium-binding motif. We therefore mutated Asp95 to Asn rather than Ala. Asn is structurally similar to Asp, can be β-hydroxylated, and is able to coordinate a calcium ion (as has been observed in EGF2, EGF3, and EGF4). As the protein S D95N variant also had reduced activity, however, it is unlikely that a calcium-binding site is disrupted. Furthermore, whereas Asp95 is known to be β-hydroxylated, it has previously been shown that β-hydroxylation itself is not a requirement for anticoagulant activity of protein S.45 Our evidence favors a direct effect of Asp95 in APC cofactor activity. Alternatively, the dramatic effect on protein S activity of the Asp95 residue substitution could be through a conformational repositioning of other functional domains. To assess this, we performed binding to phospholipids, as this property underpins all protein S function. Plate binding assays, however, indicated no major functional defect on phospholipid binding. Furthermore, domain-specific monoclonal antibody binding to WT and mutant protein S (against Gla domain, EGF1 domain, and the C-terminal SHBG domain) was also normal, suggesting that substitution of Asp95 does not reduce APC cofactor function by disrupting adjacent domain structure.

A current view of protein S–enhanced APC cofactor activity suggests a functional repositioning of the APC cleavage site away from FVa Arg506 toward FVa Arg306.27 We therefore performed a FVa inactivation assay using a FVa variant, FVa R506Q/R679Q, that cannot be cleaved at position 506 and 679. This allowed us to analyze directly cleavage at Arg306 by APC, which is at the site enhanced mainly by protein S. Using both concentration-dependent and time course assays, we were able to confirm reduced cleavage of this variant by APC in the presence of protein S D95A.

The available results therefore suggest that Asp95 of protein S may play an important and a direct role in APC recognition, resulting in enhanced APC function. Our results are compatible with the study performed by Hackeng et al,27 who used the isolated EGF1 domain of protein S to functionally disrupt the protein S and APC interaction. They suggested EGF1 as a potentially important APC contact site on protein S. Our results suggest that Asp95 constitutes a critical residue within EGF1, mediating the APC cofactor function. Together with Asp78 and Gln79, Asp95 could form the principal functional interaction site for APC.

Acknowledgments

The authors are grateful to Dr José Renan da Cunha Melo, Dr José Nélio Januário, and Dr Marcos Vinícius Andrade for their kind support on the sharing of cloning and tissue culture room. We are also grateful to Jamil Silvano de Oliveira for his helpful advice on purification techniques.

This work was supported by the International Research Development Award from Wellcome Trust, British Heart Foundation (PG/07/005), an unrestricted educational grant from Novartis, a Swedish council grant (07143), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (PPM 2007).

Authorship

Contribution: H.M.A., D.A.L., S.M.R., B.D., and J.T.B.C. designed the research, analyzed the results, and wrote the paper; and H.M.A., M.J.A., S.M.R., B.M.L., and S.T. performed the experiments.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: David Lane, Department of Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, United Kingdom; e-mail: d.lane@imperial.ac.uk.
References

Activated protein C cofactor function of protein S: a critical role for Asp95 in the EGF1-like domain

Helena M. Andersson, Márcia J. Arantes, James T. B. Crawley, Brenda M. Luken, Sinh Tran, Björn Dahlbäck, David A. Lane and Suely M. Rezende