Response

Free light chain assay and stringent complete remission in multiple myeloma: more questions than answers

We appreciated the comments by Kröger et al on our article and have read with interest their experience with free light chain (FLC) measurements in 52 patients with multiple myeloma (MM) in complete remission (CR) after allogeneic stem cell transplantation (Allo-SCT; n = 45), autologous stem cell transplantation (ASCT; n = 3) or conventional bortezomib- or lenalidomide-based therapy (n = 4). The high rate of stringent CR (sCR), with 51 of 52 (98%) of the patients achieving a normal FLC k/λ ratio, is surprising. Moreover, none of their 13 patients with oligoclonal bands had an abnormal FLC k/λ ratio, which contrasts with our results.1

The differences between the 2 studies may be explained by the nature of the treatments and the timing of light chain measurement. In the series by Kröger et al, 87% of the patients had achieved CR after Allo-SCT, whereas in our study 76.5% were in CR after ASCT. It is very likely that the immune reconstitution could be different and more delayed after the allogeneic procedure. Of note, in Kröger’s study, the free light chains were measured in patients who had been in stable CR for a minimum of only 3 months and at least 6 weeks from the first negative immunofixation electrophoresis. On the contrary, in our series, median duration of the CR was 5 years (range, 1-23.2 years), and median time of oligoclonal band appearance after allogeneic or autologous SCT was 6 months (range, 2-53 months). It is conceivable, therefore, that in those patients with long-lasting responses after high-dose therapy/SCT the robust immune reconstitution would result in the presence of oligoclonal bands and an abnormal FLC ratio, due to a kappa light chain overproduction. In fact, there is a general thought that these oligoclonal bands are transient.2 However, in our 14 patients the duration of oligoclonal bands ranged from 0.7 to 9.4 years and persisted in all of them except in the only one who relapsed, in keeping with a recent report by Mark et al.3

There are still many important unsolved issues concerning FLC measurements and sCR in MM. (1) At what time could the FLC assay be more informative (early or after a certain duration of the CR)? (2) Does the frequency of sCR vary depending on the type of treatment? (3) Is the meaning of sCR different after conventional chemotherapy, ASCT, or Allo-SCT? (4) What is the significance of an abnormal FLC ratio in patients with oligoclonal bands? (5) Is sCR of real prognostic value and, if so, in what population of patients?

Finally, we agree completely with Kröger et al that, with the current therapeutic approaches for MM as well as the availability of novel laboratory technologies, the achievement of serologic CR should no longer be the ultimate endpoint. The recent results on the prognostic impact of minimal residual disease studies by multiparameter flow cytometry4 and by molecular quantitative reverse transcription–polymerase chain reaction5 are important steps forward that can be crucial to determining for how long beyond serologic CR additional treatment is needed.

Carlos Fernández de Larrea
Department of Hematology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

María Teresa Cibeira
Department of Hematology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Montserrat Elena
Department of Biochemistry, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Juan Ignacio Arostegui
Department of Immunology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Laura Rosiñol
Department of Hematology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Montserrat Rovira
Department of Hematology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Xavier Filella
Department of Biochemistry, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Jordi Yagüe
Department of Immunology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Joan Bladé
Department of Hematology, Hospital Clinic, Barcelona and Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Joan Bladé, MD, Servei d’Hematologia, Hospital Clinic de Barcelona, Villarroel 170, 08036 Barcelona, Spain; e-mail: jblade@clinic.ub.es.

References

To the editor:

Role of GATA-1s in early hematopoiesis and differences between alternative splicing in human and murine GATA-1

We read with interest the description by Hoeller et al of an exon 2 GATA-1 mutation leading to severe transient myeloproliferative disease (TMD), in which the authors speculated that the severe phenotype might reflect loss of both full-length (FL) GATA-1 and the shorter isoform, GATA-1s, due to the position of the mutation in codon 2. Although almost all GATA-1 mutations in children with Down syndrome are in exon 2 and lead to loss of GATA-1FL, exon 2 mutations are also predicted to leave GATA-1s protein production unaffected, by translation of an alternatively spliced exon 2 mutations are also predicted to leave GATA-1s protein production unaffected, by translation of an alternatively spliced exon 2 mutations are also predicted to leave GATA-1s protein production unaffected, by translation of an alternatively spliced mRNA comprising exons 1/3/4/5/6. In humans, alternative splicing producing an exon 1/2/3/4/5/6 mRNA for GATA-1FL and exon 1/3/4/5/6 splice variant for GATA-1s has been demonstrated in adult bone marrow CD34+ cells. Using exon 1 and 3 primers, we have also found that both variants are consistently expressed in all normal cord blood and second-trimester fetal liver and bone marrow cells we have tested (n = 12; Figure 1A). It seems likely, therefore, that exon 2 mutations would still allow expression of GATA-1s mRNA, which may be difficult to detect at the protein level due to the relative insensitivity of commercial GATA-1 antibodies in immunohistochemical reactions. Interestingly, and by contrast, although mice produce the 2 Gata-1 isoforms by alternative translation of a single mRNA, Gata-1s transcripts have not been reported in murine tissues and, in our experience, exon 1 and 3 primers consistently amplify only the FL transcript in mice (Figure 1B) despite evidence of Gata-1s protein production (Figure 1C). Further investigation of the functional consequences of different GATA-1 mutations may shed further light on the enigmatic role of GATA-1s in early hematopoiesis and differences between alternative splicing in human and murine GATA-1.

Christina Halsey
Faculty of Medicine,
University of Glasgow,
Glasgow, United Kingdom

Oliver Tunstall
Department of Haematology,
Imperial College London,
London, United Kingdom

Brenda Gibson
Department of Paediatric Haematology,
Royal Hospital for Sick Children,
Glasgow, United Kingdom

Irene Roberts
Department of Haematology,
Imperial College London,
London, United Kingdom

Gerard Graham
Faculty of Medicine,
University of Glasgow,
Glasgow, United Kingdom

Acknowledgments: This work was supported by a Leukaemia Research Clinical Training Fellowship (C.H.) and a Kay Kendall Leukaemia Fund Junior Fellowship (O.T.). Approval was obtained from the Hammersmith and Queen Charlotte’s Hospital Research Ethics Committee for these studies. Informed consent was provided according to the Declaration of Helsinki.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Dr Christina Halsey, Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Pl, Glasgow, G12 8TA, United Kingdom; e-mail: c.halsey@clinmed.gla.ac.uk.

References
2. Rainis L, Bercovich D, Streil S, et al. Mutations in exon 2 of GATA1 are early
Response: Free light chain assay and stringent complete remission in multiple myeloma: more questions than answers

Carlos Fernández de Larrea, María Teresa Cibeira, Montserrat Elena, Juan Ignacio Arostegui, Laura Rosiñol, Montserrat Rovira, Xavier Filella, Jordi Yagüe and Joan Bladé

Updated information and services can be found at: http://www.bloodjournal.org/content/115/16/3414.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml