Response

Malignant mesothelioma after irradiation: consistency and synergy

We thank Drs Teta and Wagner for their comments. We agree with their remark that the relative risk for mesothelioma differs between different cohorts and with different inclusion criteria. Within our own population, we noted that all mesothelioma cases were from the 2 hospitals from the highly industrialized area, whereas no mesothelioma cases were observed in the populations from the other hospitals.1

This heterogeneity, in combination with the unexpectedly high proportion of patients who had been exposed to asbestos, prompted us to state that a potential synergy might exist between radiation and asbestos.

Precisely because we had no data on asbestos exposure in Hodgkin lymphoma patients who did not develop mesothelioma, we very carefully worded our suggestion on the potential interaction between asbestos and irradiation. Similarly, we suggested a potential synergy between chemotherapy and radiotherapy, because the standardized incidence ratio (SIR) for patients treated with both chemotherapy and radiotherapy was considerably higher than for those who had been treated with chemotherapy alone.

In conclusion, we think our data might add to the scarce preclinical evidence for the synergistic action of asbestos and radiation in the pathogenesis of mesotheliomas, but our data certainly do not prove such synergy. Hardly any clinical, or even preclinical, data have been published on this topic. Determining whether or not an interaction exists between radiation and asbestos requires data from larger studies examining the etiology of mesothelioma as a second malignancy. The collection of valid exposure data on asbestos will not be a trivial task in such research.

To the editor:

Selective accumulation of virus-specific CD8+ T cells within the peripheral blood stem cell compartment

The absence of cellular immunity is central to the pathogenesis of herpesvirus-mediated diseases after allogeneic hemopoietic stem cell transplantation (HSCT).1,2 For both bone marrow (BM)– and granulocyte-colony stimulating factor–mobilized peripheral blood stem cells (PBSCs) HSCT, donor-derived Epstein-Barr virus (EBV) and cytomegalovirus (CMV) peptide–specific CD8+ T cells clones undergo early expansion and persist long-term, with additional diversification arising from novel antigen-specific clones

References

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PBSC</th>
<th>SE</th>
<th>PB</th>
<th>SE</th>
<th>P</th>
<th>Findings of Moss in BM vs PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>66 (22-70)</td>
<td>3.713</td>
<td>53 (24-72)</td>
<td>2.79</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Sex, M/F</td>
<td>11/5</td>
<td>NA</td>
<td>1/3</td>
<td>NA</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td>7 myeloma, 8 lymphoma, 1 Ewing sarcoma</td>
<td>NA</td>
<td>Healthy</td>
<td>NA</td>
<td>80% primary lung cancer, 20% secondary lung cancer</td>
<td></td>
</tr>
<tr>
<td>% CD3⁺CD8⁺</td>
<td>40.9</td>
<td>3.329</td>
<td>27</td>
<td>1.8</td>
<td>**</td>
<td>Lower in BM</td>
</tr>
<tr>
<td>CD4⁺CD8⁺ ratio</td>
<td>1.288</td>
<td>0.213</td>
<td>2.358</td>
<td>0.2356</td>
<td>**</td>
<td>Increased CD8⁺ (NS)</td>
</tr>
<tr>
<td>% CD8⁺CD45RA⁺CCR7⁺ (naive)</td>
<td>20.56</td>
<td>2.774</td>
<td>50.3</td>
<td>2.354</td>
<td>***</td>
<td>Equivalent</td>
</tr>
<tr>
<td>% CD8⁺CD45RA⁺CCR7⁺ (CM)</td>
<td>20.96</td>
<td>3.54</td>
<td>10.2</td>
<td>1.11</td>
<td>*</td>
<td>Equivalent</td>
</tr>
<tr>
<td>% CD8⁺CD45RA⁺CCR7⁺ (EM)</td>
<td>16</td>
<td>3.196</td>
<td>17.3</td>
<td>1.571</td>
<td>NS</td>
<td>Higher in BM</td>
</tr>
<tr>
<td>% CD8⁺CD45RA⁺CCR7⁺ (EMR)</td>
<td>19.2</td>
<td>2.589</td>
<td>20</td>
<td>1.16</td>
<td>NS</td>
<td>Lower in BM</td>
</tr>
<tr>
<td>% CD8⁺CD62L</td>
<td>14.81</td>
<td>1.615</td>
<td>36.75</td>
<td>24.452</td>
<td>***</td>
<td>Higher in BM</td>
</tr>
<tr>
<td>% CD8⁺27⁺28⁺</td>
<td>33.7</td>
<td>5.581</td>
<td>57.75</td>
<td>3.181</td>
<td>*</td>
<td>Higher in BM</td>
</tr>
<tr>
<td>% CD8⁺27⁺28⁺</td>
<td>17.1</td>
<td>2.313</td>
<td>7.55</td>
<td>1.157</td>
<td>***</td>
<td>Equivalent</td>
</tr>
<tr>
<td>% CD8⁺27⁺28⁺</td>
<td>10.19</td>
<td>1.187</td>
<td>18.8</td>
<td>1.862</td>
<td>***</td>
<td>Equivalent</td>
</tr>
<tr>
<td>% CD8⁺27⁺28⁺</td>
<td>30.45</td>
<td>4.818</td>
<td>23.45</td>
<td>3.226</td>
<td>NS</td>
<td>Lower in BM</td>
</tr>
<tr>
<td>% CD8⁺CXCR3⁺</td>
<td>2.16</td>
<td>0.67</td>
<td>0.775</td>
<td>0.165</td>
<td>*</td>
<td>Lower in BM</td>
</tr>
<tr>
<td>% CD8⁺CCR5⁺</td>
<td>31.15</td>
<td>3.746</td>
<td>25.13</td>
<td>1.586</td>
<td>*</td>
<td>Higher in BM</td>
</tr>
<tr>
<td>% CD8⁺CXCR6⁺</td>
<td>4.745</td>
<td>0.92</td>
<td>2.55</td>
<td>0.53</td>
<td>NS</td>
<td>Higher in BM</td>
</tr>
<tr>
<td>% FOXP3⁺CD4⁺</td>
<td>5.35</td>
<td>0.87</td>
<td>6.772</td>
<td>0.54</td>
<td>NS</td>
<td>Equivalent</td>
</tr>
<tr>
<td>% EBV latent</td>
<td>0.01</td>
<td>0.1114</td>
<td>0.2</td>
<td>0.5901</td>
<td>*</td>
<td>Equivalent</td>
</tr>
<tr>
<td>% EBV lytic peptide–specific IFN-γ CD3⁺CD8⁺</td>
<td>0.605</td>
<td>0.461</td>
<td>1.64</td>
<td>0.984</td>
<td>NS</td>
<td>Higher in BM</td>
</tr>
<tr>
<td>% CMV peptide–specific IFN-γ CD3⁺CD8⁺</td>
<td>0.25</td>
<td>0.123</td>
<td>0.59</td>
<td>0.6653</td>
<td>NS</td>
<td>Lower in BM</td>
</tr>
<tr>
<td>EBV-DNA copies/10⁶ cells</td>
<td>0 (0-42)</td>
<td>2.871</td>
<td>2685 (0-3614)</td>
<td>251.9</td>
<td>NS</td>
<td>Lower in BM</td>
</tr>
</tbody>
</table>

Herpesvirus peptide–specific IFN-γ producing CD8⁺ T cells were detected by intracellular cytokine staining by stimulating PB or PBSCs with appropriate HLA class I–restricted viral peptide as previously described. Intravenous cyclophosphamide (2 g/m²) and subcutaneous G-CSF (10 mcg/kg) were used for PBSC mobilization. Leukapheresis was performed using a Cobe Spectra Gambro BCT continuous flow cell separator.

PBSC indicates peripheral blood stem cells; PB, peripheral blood; BM, bone marrow; NS, not significant; NA, not applicable; IFN-γ, interferon-γ; CM, central memory; EM, effector memory; and EMR, effector memory revertant.

*P = .05-.01; **P = .01-.001; ***P < .001.
in PBSC relative to PB. The data have implications for HSCT and adoptive immunotherapy.

Sanjeena Singh
Clinical Immunohaematology Lab, Queensland Institute of Medical Research, Brisbane, Australia

Paulien van Hauten
Clinical Immunohaematology Lab, Queensland Institute of Medical Research, Brisbane, Australia

Kimberley Jones
Clinical Immunohaematology Lab, Queensland Institute of Medical Research, Brisbane, Australia

Karen Grimmett
Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia

Anthony K. Mills
Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia

Maher K. Gandhi
Clinical Immunohaematology Lab, Queensland Institute of Medical Research; and Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia

Acknowledgments: Work in the laboratory is supported by the NHMRC, Cancer Council of Queensland, the Leukaemia Foundation, RISS, and Atlantic Philanthropies.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Maher K. Gandhi, Level I, CBCRC Bldg, Queensland Institute of Medical Research, Herston Rd, Brisbane, Queensland, 4006 Australia; e-mail: Maher.Gandhi@qimr.edu.au.

References

To the editor:

Antinuclear antibody (ANA)–positive thrombocytopenia: primary, but with a difference

In the recent Vicenza Consensus Conference,1 2 clinical-immunologic entities have been considered when defining the criteria for differentiating “primary” from “secondary” forms of immune thrombocytopenias. However, although the thrombocytopenia associated with the presence of antiphospholipid antibodies is discussed at some length (obviously within the limits of a standardization conference), this is not so for ITP with antinuclear antibodies (ANA), which is even more complex and challenging.

There are 2 eras in the study and in the gradual elucidation of this intriguing clinical and immunologic entity. The first clinical era included the description of distinct histologic patterns in spleens resected from apparently idiopathic ITP patients who then went on to develop systemic lupus erythematosus (SLE).2,3 At the same time there was a hot debate as to whether splenectomy for ITP could precipitate SLE,4 a hypothesis that was ultimately disproved.5 The second era is founded mainly on longitudinal studies of patients with ITP in which low-tiered ANAs did not predict for the late development of SLE,6 but high-titer ANA, irrespective of subtype, did.7,8 In a recent study Abbadi et al9 have found that a positive ANA test (no pattern specified) predicted for a poor response to initial steroid therapy in adults with ITP.9

There is no doubt that an isolated positive ANA test in low titers does not contradict the diagnosis of primary chronic ITP, even if there already appears to be a different response to corticotherapy. However, the condition may progress, step by step, along with the increasing amount of ANA and, of course, of other antibodies such as anti-ds DNA, anti-Sm and antinuclear ribonucleoprotein antibodies. In a landmark study, Arbuckle et al10 have found that in 115 of 130 patients with SLE (88%), at least one SLE autoantibody tested was present before the diagnosis (≤ 9.4 years earlier; mean, 3.3 years). In this clinical material ANAs appeared significantly earlier than the other, more “ominous” antibodies. Similarly, in an imprecise number of ANA-positive ITP patients, a progressive spreading of autoimmunity (“a crescendo of autoimmunity”10) may take place, from organ-specific to non–organ-specific antibodies.

In conclusion, the potential evolution from ITP to SLE depends on a galaxy of genetic and epigenetic factors that dictate the fate of any single case. However, the demonstration of varying degrees of steroid-refractoriness in the ANA-positive subgroup, together with the pathology and immunologic histories such as those that have been discussed warrant, in my opinion, a special consideration for this entity, which even at the stage of conventional “primariness” carries some degree of difference.

Alberto M. Marmont
Division of Hematology & Stem Cell Transplantation, Azienda Ospedaliera-Universitaria San Martino, Genova, Italy

Conflict-of-interest disclosure: The author declares no competing financial interests.

Correspondence: Prof A. M. Marmont, II Division of Hematology & Stem Cell Transplantation, Azienda Ospedaliera-Universitaria San Martino, Largo R Benzi 10, 16132 Genova, Italy; e-mail: Alberto.marmont@hsanmartino.it.
Selective accumulation of virus-specific CD8$^+$ T cells within the peripheral blood stem cell compartment

Sanjleena Singh, Paulien van Hauten, Kimberley Jones, Karen Grimmett, Anthony K. Mills and Maher K. Gandhi