Platelet membrane proteomics: a novel repository for functional research

Urs Lewandowski,1 Stefanie Wortelkamp,1 Katharina Lohrig,2 René P. Zahedi,1 Dirk A. Wolters,2 Ulrich Walter,3 and Albert Sickmann1,4

1Institute for Analytical Sciences (ISAS), Dortmund; 2Department of Analytical Chemistry, Ruhr-University-Bochum, Bochum; 3Institute for Clinical Biochemistry and Pathobiocchemistry and Central Laboratory, University Würzburg, Würzburg; and 4Medizinisches Proteom-Center (MPC), Ruhr-University-Bochum, Bochum, Germany

Being central players in thrombosis and hemostasis, platelets react in manifold and complex ways to extracellular stimuli. Cell-matrix and cell-cell interactions are mandatory for initial adhesion as well as for final development of stable plugs. Primary interfaces for interactions are plasma membrane proteins, of which many have been identified over the past decades in individual studies. However, due to their enucleate structure, platelets are not accessible to large-scale genomic screens and thus a comprehensive inventory of membrane proteins is still missing. For this reason, we here present an advanced proteomic setup for the detailed analysis of enriched platelet plasma membranes and the so far most complete collection of platelet membrane proteins. In summary, 1282 proteins were identified, of which more than half are termed to be of membrane origin. This study provides a brief overview of gene ontology subcellular and functional classification, as well as interaction network analysis. In addition, the mass spectrometric data were used to assemble a first tentative relative quantification of large-scale data on the protein level. We therefore estimate the presented data to be of major interest to the platelet research field and to support rational design of functional studies. (Blood. 2009;114:e10-e19)

Introduction

Platelets are essential mediators of hemostasis and are well known for their major role in thrombotic events. In the context of increasing numbers of cardiovascular diseases, platelets are of premier interest for scientific research. Owing to their unique enucleate ultrastructure (still including organelles such as Golgi, endoplasmic reticulum, or mitochondria), common molecular biology–based methods can hardly be applied. Their megakaryocyte-derived maturation process renders platelets inconvenient targets for genome-based research approaches. Although mouse knockout models were generated for a range of functional studies, they are limited mostly to known protein components of the platelet system, estimated to be of functional importance. Moreover, protein synthesis in platelets is limited, and a direct correlation between mRNA profiling and protein presence is problematic at best. Based on these limitations, modern proteome analysis might be a key asset for the analysis of the platelet proteome and its so far unknown components. The derived knowledge of these newly identified proteins represents a rich source for the rational design of functional studies.

Despite their major functional importance a complete inventory of the platelet proteome is far from being accessible. Due to the development of biomolecular mass spectrometry, a series of medium- to large-scale studies was conducted upon the platelet proteome. Early studies aiming for a complete overview of platelet plasma membrane proteins most often used 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) as primary separation technique, frequently in conjunction with peptide mass fingerprint identification of proteins. However, as demonstrated by Moebius et al1 2D-PAGE–based studies of complete platelets2,3 were reasonably unsuccessful in elucidating membrane components compared with targeted membrane purifications in combination with suitable separation techniques,1 which achieved identification of nearly 300 proteins, of which approximately half were of membrane origin. Of these, G6B was later confirmed by Senis et al to be a novel immunoreceptor tyrosine-based inhibitory motif protein4 as part of an additional study on the platelet membrane proteome. Still, only 46 plasma membrane components could be observed within a total of 136 membrane proteins in this study, thereby indicating a potential gap of knowledge regarding protein membrane constituents. Plasma membrane proteins are among the key targets for platelet drug and functional research, since they are the primary interface to extracellular stimuli and therefore also for pharmaceutical treatment of platelet-related disorders. We therefore sought to increase the identification rate of platelet membrane proteins with a major focus on the plasma membrane.

For plasma membrane enrichment, several methods have been established in the past, with density gradients being the most common. In addition, lectins have been used to additionally purify plasma membrane glycoproteins.1 However, due to our experience with efficient enrichment of rat brain plasma membranes by 2-phase aqueous partitioning systems,5,6 we adopted this technique for platelet membranes. Two-phase partitioning is based on sorting of vesicles upon their physicochemical surface properties (such as hydrophilicity/hydrophobicity and net surface charge, possibly due to their phospholipid composition)6 within a defined 2-polymer system. A common system is the polyethylene glycol (PEG)/dextran system, where plasma membranes show the highest affinity for the more hydrophobic upper PEG phase in comparison with
other membrane vesicles. We already successfully used this technique for analysis of plasma membrane N-glycosylation sites on human platelets. In contrast, the current study intends to provide a general overview of membrane proteins within these preparations to allow for a more global assessment of the membrane protein composition.

Here, 3 major strategies were pursued for protein identification: (1) For a global analysis, separation of proteins by 1-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis (1D-PAGE) preceded by nano–liquid chromatography (LC)–tandem mass spectrometry detection of peptides, basically as described previously was conducted. (2) To address issues commonly encountered with PAGE separation of membrane proteins, highly complex peptide mixtures from membrane proteins were separated by strong cation exchange and reversed-phase chromatography within a MudPIT setup (Multidimensional Protein Identification Technology) prior to mass spectrometric detection. (3) To reduce the high complexity of peptide mixtures prior detection, Combined Fractional Diagonal Chromatography (COFRADIC) was used to isolate N-terminal, methionine- or cysteine-containing peptides means chemical derivatization and standardized liquid chromatography. Thus, in combination with aqueous 2-phase partitioning, this 3-pronged approach enabled a comprehensive analysis of the platelet membrane proteome that clearly exceeds our previous knowledge about the plasma membrane inventory.

Methods

Materials

Unless stated otherwise, chemicals were purchased from Merck KGaA in analytical quality or better. Water (18 MΩ) was obtained from an Elga Labwater system.

Platelet purification

Human platelets were prepared based on procedures described previously from fresh apheresis concentrates (leukocyte depleted, ~ 2 × 10⁵ leukocytes, ~ 6 × 10⁶ erythrocytes, and 2-4 × 10¹¹ platelets/250 mL; Department of Transfusion Medicine, University Würzburg) by additional differential centrifugation steps to further diminish potential cellular contaminations; a detailed procedure is given in the supplemental methods, available on the Blood website; see the Supplemental Materials link at the top of the online article. Use of platelets was approved by the ethics committee of the University of Helsinki.

Plasma membrane enrichment

Platelet plasma membranes were enriched as previously described by Plasma membrane enrichment of Helsinki. committee of the University of Würzburg and donors were informed upon top of the online article. Use of platelets was approved by the ethics committee of the University of Helsinki.

1D-PAGE and digests

Platelet membrane pellets from 2-phase partitioning systems were reconstituted in 1 × LDS-sample buffer (Invitrogen). After incubation at 75°C for 15 minutes, samples were applied to 4% to 12% Bis-Tris gels using a MOPS buffer system (NuPAGE-Novex; Invitrogen). Protein separation was followed by colloidal Coomassie staining. Subsequently, gel lanes were cut in 1-mm slices and bands were treated as described previously. After reduction and alkylation, proteins were tryptically digested in-gel and peptides were extracted by 0.1% trifluoroacetic acid.

COFRADIC

A detailed description of COFRADIC experimental procedures is given in the supplemental methods.

Mass spectrometry

Nano-LC-tandem mass spectrometry of 1D-PAGE and COFRADIC fractions. Tryptic peptides from in-gel digestion of 1D-PAGE bands were separated by nano-LC and detected by a Qtrap4000 mass spectrometer (Applied Biosystems) as described previously. In turn, mass spectrometric detection of COFRADIC fractions on a QStar Elite Q-Tof (Applied Biosystems) was preceded by nano-LC separation, essentially as described previously.

Multidimensional protein identification technology. MudPIT analyses were conducted following a variation of a protocol by Wolters et al. A detailed methods section is given in the supplemental methods.

Data evaluation

Shotgun approaches. Raw data were transformed into Mascot generic format using either plug-ins for Analyst 1.4.2 (mascot.dll, MatrixScience) for Qtrap data or ltx dta.exe for LTQ-XL data. The resulting peak lists were searched against a concatenated forward/reversed human subset of the Swiss-Prot database (http://www.expasy.org, 20 834 sequences) using either Mascot (MatrixScience) or Omssa as search engines. For Omssa and Mascot, the following search parameters were used: Trypsin was chosen as protease with one miscleavage site allowed, carbamidomethylation (C) was set as fixed, and oxidation (M) was set as variable modification. Precursor and tandem mass spectrometry (MS/MS)–ion tolerances were limited to 0.05 Da (Qtrap) and 0.01 Da (LTQ), respectively. Subsequent to searches, the result-files of Omssa and Mascot were combined in Masssieve (http://www.proteomecommons.org/dev/masssieve). As filter criteria, P value cutoffs were set to .05 for Mascot and .01 for Omssa. Furthermore, hits were limited to proteins that feature at least 2 different significantly identified peptides. Thereby, a false-positive rate of less than 1% was achieved.

COFRADIC. COFRADIC data were searched against a human subset of the Swiss-Prot database (see “Shotgun approaches”) using Mascot (MatrixScience). Mascot generic files were generated using the plug-in to Analyst QS 2.0 (mascot.dll; MatrixScience). Although the different approaches necessitated individual settings, the following general parameters were used: Both precursor and MS/MS tolerance were set to 0.2 Da, and one missed cleavage was allowed. Depending upon the type of peptide that was sorted for the Mascot, modification parameters were set accordingly as seen in Table 1. All resulting peptide identifications were manually validated regarding presence of ion series, dominant fragmentation patterns (eg, adjacent to proline), and overall signal intensity.
Table 1. Mascot search parameters for COFRADIC approaches

<table>
<thead>
<tr>
<th>Fixed modification</th>
<th>Variable modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-terminal COFRADIC (protease: Arg-C/P)</td>
<td>Pyroglutamate (N-term Q), pyrocarbamidomethyl cysteine (N-term alkylated C), acetylation (N-term), trideutero-acetylation (N-term)</td>
</tr>
<tr>
<td>Met-Cys-COCRADIC (protease: trypsin)</td>
<td>Pyroglutamate (N-term Q), pyrocarbamidomethyl cysteine (N-term alkylated C), acetylation (N-term), trideutero-acetylation (N-term)</td>
</tr>
</tbody>
</table>

Spectral counting. A version of the exponentially modified protein abundance index (emPAI)\(^{24}\) approach was used to gain quantitative information of protein abundance by spectral counting. Therefore, the number of possible tryptic peptides (\(N_{\text{observable}}\)) was calculated for each protein with resulting peptides in the range of \(m/z\) 760-4000 Da. emPAI indices were calculated as \(\ln(10^{[N_{\text{observed}}/ (5 \times N_{\text{observable}}})})).\) The number of observed peptide hits was extracted from the Masssieve result lists for each protein. Quantification was performed for discrete protein hits from shotgun data only. Differentiable hits share peptides with other proteins, whereas the COFRADIC approach concentrates on subsets of peptides, rendering both data sets unsuitable for the spectral counting approach.

Results

General overview

By the combined approaches of MudPIT, 1D-PAGE coupled to nano-LC-tandem mass spectrometry, as well as COFRADIC, a total of 1282 proteins were identified within the platelet membrane preparations derived from aqueous 2-phase partitioning. Thereof, 498 proteins were identified with peptide-centric COFRADIC on single-peptide basis, whereas a total of 1202 proteins were accessible by the combined results of the 2 shotgun-based approaches. A major intersection of 418 proteins was determined between shotgun and COFRADIC data sets.

Shotgun data

Mass spectra of the 2 shotgun approaches were searched by 2 independent search engines, Ommssa\(^{25}\) and Mascot.\(^{26}\) Results from 3 MudPIT and 3 independent 1D-PAGE experiments were directly combined after searches. They showed a large correlation of the engines on the peptide level with 7841 peptides being identified by Ommssa and 6895 peptides identified by Mascot, with a major intersection of 5918 peptides. The parallel use of Mascot and Ommssa therefore extended the results by approximately 14% (based on Mascot hits) and crosswise confirmed the majority of hits for each search engine. After data evaluation of result files in Masssieve, only protein hits with at least 2 valid peptide identifications were accepted. This limitation alongside a false-positive discovery rate ranging below 1% enabled presentation of a highly reliable and accurate data set. Therefore, we also refrained from introducing proteins with only one identified peptide, which would have resulted in more than 2000 protein identifications. To further remove ambiguous data, a differentiation between discrete protein hits (934) and differentiable protein hits (268) was made. These proteins are either identified by discrete peptides that are shared with no other protein sequence, or they are partially identified by shared peptides. However, additional peptides always guarantee the correct annotation of the protein (isoform). Indeed, about three quarters of identifications were based on 3 or more peptides, and the average sequence coverage was 21.8%. Other proteins, which could not be identified unambiguously (superset, subsumable, equivalent; total of 167 protein features), were discarded for the current analysis. For further use, all data including the latter are presented in a supplemental table along with identified peptide sequences.

Combined fractional diagonal chromatography

Using a peptide-centric strategy, 3 approaches aiming for N-terminal, and cysteine- and methionine-containing peptides were used, identifying a total of 498 proteins. Methionine- and cysteine-based COFRADIC strategies were able to identify 274 and 219 proteins, respectively, whereas N-terminal COFRADIC enabled 160 protein identifications (Figure 1).

The 3 approaches exhibited highly complementary results shown by the 360 proteins, which were covered by only one of the approaches each. This stresses the necessity for parallel application of all 3 analysis variants. Although the identification of the proteins is based on individual mass spectra, all peptide hits were manually validated to account for correct annotation and identification by completeness of ion series. In addition, all spectra are listed in the pride database for public access (http://www.ebi.ac.uk/pride/init.do; experiment accession no. 8127 [methionine], no. 8128 [N-terminal], and no. 8129 [cysteine]).\(^{27}\) COFRADIC enabled protein identification ranging from high abundant proteins, such as integrin alpha-IIb and other integrins (integrin alpha-5 or alpha-6), down to low abundant proteins, such as the G-protein–coupled receptor PAR1. In combination with the 2-phase aqueous partitioning system, COFRADIC enabled the identification of 234 proteins (47%) with at least one predicted transmembrane domain (prediction by TMHMM 2.0\(^{28}\)). For comparison, we mapped the IPI-based accessions of another COFRADIC-based study on whole platelets lysates\(^{29}\) back to Swiss-Prot accession,\(^{30}\) yielding only a share of 17% proteins with at least one TMD (66 of 385). Clearly, aqueous 2-phase partitioning-based membrane purification caused a nearly 3-fold increase in membrane protein identification rate.

Although only 80 proteins were exclusively identified by COFRADIC, the approach also yields additional protein-related information. In case of N-term COFRADIC, the in vivo existing N-termini are determined, of which a few examples are shown in Figure 1 (for a complete list, compare supplemental table). In comparison with the Swiss-Prot database, those N-termini often concur with literature as shown for GpIX, JAM1, or GpIB-beta. In comparison with the Swiss-Prot database, those N-termini often concur with literature as shown for GpIX, JAM1, or GpIB-beta. In the case of less known proteins, however, the N-termini are so far unknown and can now be added to the database information or be used for functional experiments. However, it should be noted that N-terminal processing might also occur during the apheresis used for production of the platelet concentrates.

Enrichment of membrane proteins

Being targeted at membrane proteins and more specifically those located in the plasma membrane, an analysis of potential TMDs
was conducted using TMHMM 2.0 for the complete data set and in addition also for several previous studies found in the literature. The results are summarized in the bar diagram of Figure 2A. Clearly, the current study provides a tremendous increase of protein identifications featuring at least one TMD. Although studies using whole platelet lysates (O’Neill/Garcia/Guerrier) detected 63 proteins in this case, the current study features a more than 4-fold increase. In addition, in comparison with more focused studies on plasma membranes or microparticles, the current analysis encompasses a far superior number of multimembrane-pass proteins, for example, 30 proteins with 7 transmembrane domains including several G-protein–coupled receptors such as PAR1, PAR4, or the potential G-protein–coupled receptor 92. Nearly a hundred proteins were predicted with equal or more than 8 TMDs including adenylate cyclases 3, 5, and 6, proteins of the solute carrier families 12, 22, 23, and 40, as well as many less studied proteins such as the 2-pore calcium channel protein 1. In conclusion, TMHMM 2.0 analyses confirmed the improved discovery rate of membrane proteins by determining 626 membrane-spanning proteins.

The subcellular distribution of proteins was estimated by their GO annotations.31 Therefore, Ontologizer 2.032 was used to sort proteins as shown by Figure 3. Evidently, a high number of plasma membrane components (371) are present within the 1282 protein data set, including 142 integral plasma membrane components. Furthermore, a range of proteins from other membrane-bound compartments, such as endoplasmic reticulum (ER) (199), Golgi apparatus (148), and vesicles (140), has been identified. A comparison of accessions between summed ER, Golgi, and vesicle (388) and plasma membrane proteins (371) yields a major intersection of 116 proteins. Obviously those proteins have a certain distribution or are shuttling between the mentioned organelles. However, a major share of the proteins has no determined subcellular localization at all, judged by their GO terms, and represents protein species not yet characterized.

Although soluble proteins such as actin (hash key marker) are largely depleted, plasma membrane proteins such as gpIIb/IIIa (asterisks) are heavily enriched. This observation is congruent with Moebius et al,1 showing a similar distribution of actin and gpIIb/IIIa, although with a higher share of actin remaining. This, however, is attributed to the additional, second carbonate extraction step17 in the current study, obviously removing larger parts of the membrane cytoskeleton.

The subcellular distribution of proteins was estimated by their GO annotations.31 Therefore, Ontologizer 2.032 was used to sort proteins as shown by Figure 3. Evidently, a high number of plasma membrane components (371) are present within the 1282 protein data set, including 142 integral plasma membrane components. Furthermore, a range of proteins from other membrane-bound compartments, such as endoplasmic reticulum (ER) (199), Golgi apparatus (148), and vesicles (140), has been identified. A comparison of accessions between summed ER, Golgi, and vesicle (388) and plasma membrane proteins (371) yields a major intersection of 116 proteins. Obviously those proteins have a certain distribution or are shuttling between the mentioned organelles. However, a major share of the proteins has no determined subcellular localization at all, judged by their GO terms, and represents protein species not yet characterized.
Functional characterization

A complete functional characterization of the current protein survey seems improbable, especially due to the diverse functions of identified proteins. To provide some estimate of functional sub-classes, we used GO annotations to highlight protein classes of potential interest.

Being the primary interface for extracellular stimuli, the platelet plasma membrane is supposed to contain a large selection of proteins involved in signal transduction. Indeed, 290 proteins were returned by this entry via their GO terms, including 156 proteins with signal transduction activity and encompassing 104 entries with receptor activity. Despite this high number, it has to be noted that many other activities may not be reflected by GO terms, yet. Although it is far beyond the scope of this study to discuss all membrane proteins in total, some examples of membrane-residing protein classes will be briefly shown: G-protein–coupled receptors (GPCRs), proteins of cellular adhesion, and membrane ordering proteins. Furthermore, a complete list of proteins sorted by GO terms into (functional) classes is presented within the supplemental table or may rapidly be assembled using Ontologizer (Table 2).

In a recent study, Amisten et al44 probed for GPCR-derived mRNA in platelet transcripts, identifying 28 GPCRs and quantifying 12 receptors on the transcript level. In our current data set, 13 GPCRs are either GO annotated (AVPR1A, CCR4, CD97, CXCR4, LPAR5/GPR92, P2RY1, P2RY12, PTAFR, PTGDR, PTGIR, XPR1) or otherwise known GPCRs (PAR1, PAR4). Only

Table 2. Algorithms and tools suitable for analysis of platelet proteome data

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniProt</td>
<td>Curated database with linked information sources, retrieval of fasta sequences, etc</td>
<td>http://www.uniprot.org/33</td>
</tr>
<tr>
<td>Protein identifier cross reference service (PICR)</td>
<td>Cross-reference algorithm for accession exchange between different formats (eg, NCBI vs Swiss-Prot or gene name vs Swiss-Prot accession)</td>
<td>http://www.ebi.ac.uk/Tools/picr/34</td>
</tr>
<tr>
<td>Exasy</td>
<td>Proteomics server for various prediction and sequence analysis programs (eg, prediction of phosphorylation and glycosylation sites, TMDs, import sequences, domains)</td>
<td>http://www.exasy.org/tools/</td>
</tr>
<tr>
<td>TMHMM 2.0</td>
<td>Prediction of transmembrane domains</td>
<td>http://www.cbs.dtu.dk/services/TMHMM/</td>
</tr>
<tr>
<td>Simple Modular Architecture Research Tool (SMART)</td>
<td>Prediction and annotation of protein domains, internal links to PFAM</td>
<td>http://smart.embl-heidelberg.de/smart/batch.pl35</td>
</tr>
<tr>
<td>ProtFun 2.2</td>
<td>Ab initio prediction of protein function, enzymatic properties and possible gene ontology, ab initio predictions of protein function from sequence.</td>
<td>http://www.cbs.dtu.dk/services/ProtFun/36</td>
</tr>
<tr>
<td>STRING</td>
<td>STRING is a database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations</td>
<td>http://string.embl.de/37</td>
</tr>
<tr>
<td>Unified Human Interactome (UniHI)</td>
<td>Interaction network prediction</td>
<td>http://theoderich.fb3.mdc-berlin.de:8080/unih/home38</td>
</tr>
<tr>
<td>GoMiner</td>
<td>Evaluation of gene ontology classification for large scale data</td>
<td>http://discover.nci.nih.gov/gominer/39</td>
</tr>
<tr>
<td>Ontologizer</td>
<td>Evaluation of gene ontology classification for large scale data, comparison between datasets</td>
<td>http://compbio.charite.de/index.php/ontologizer2.html</td>
</tr>
<tr>
<td>Bioinformatic Harvester III</td>
<td>Harvester crawls and cross-links the following bioinformatic sites: 4DXp, AceView, BLAST, Biocompare, CDART, CDD, ensembl, FishMap, Galaxy, UCSC GenomeBrowser, gpf-cDNA, Google-Scholar, gopubmed, Harvest42, H-Inv, HomoloGene, iHOP, IPI, MapView, MGI, MINT, Mitochond, OMIM, PolyMeta, PSORT II, RGD, SMART, Sosui, SOURCE, STRING, TAIR, Unigene, UniprotKB, Wikipedia, WikiProtein</td>
<td>http://harvester.fzk.de/harvester/40</td>
</tr>
<tr>
<td>Reactome (including SkyPainter)</td>
<td>Curated knowledgebase of biologic pathways</td>
<td>http://www.reactome.org51</td>
</tr>
<tr>
<td>KEGG PATHWAY database</td>
<td>Collection of manually drawn pathway maps representing our knowledge on the molecular interaction and reaction networks (also accessible via STRING)</td>
<td>http://www.genome.jp/kegg/PATHWAY.html52</td>
</tr>
<tr>
<td>iHOP</td>
<td>Hyperlinked information about proteins</td>
<td>http://www.ihop-net.org/UniPub/iHOP/43</td>
</tr>
</tbody>
</table>
6 of them (AVPR1A, GPR92, P2RY1, P2RY12, PAR1, and PTGIR) were determined by both studies. Clearly, proteomics is able to complement mRNA profiling by proving the presence (eg, of GPR92) for the first time on the protein level for platelet samples.

Apart from signal transduction, membrane proteins also have additional functions, such as cellular adhesion. By GO terms, 86 proteins implicated in cell adhesion have been found and also 47 proteins present or involved in cell junctions. Among them are several proteins known to locate to either cell-cell junctions or anchoring junctions such as ITGA2B, ITGAV, TLN1, VASP, or VCL. Furthermore, ILK (integrin-linked kinase) was identified, for initially raising antibodies.

It was possible to prove existence of CD37, CD81, and Tspan4 on the plasma membrane (by similarity; Uniprot annotation). Suppoplementing the information regarding calcium channels, we identified 101 proteins that are reported to bind calcium by GO. These include integrins as well as, for example, the ER calcium-sensor STIM1.

Relative quantification of platelet proteins

Inherently, mass spectrometry is a qualitative technique used for identification of compounds by their fragmentation patterns. However, under certain conditions, quantitative information may be deduced from mass spectrometric data sets. During recent years, a number of techniques for relative and absolute quantitation of proteins by mass spectrometry have been introduced. Although some approaches rely on chemical labeling, other label-free techniques have gained interest over recent years. One of them, called exponentially modified Protein Abundance Index (emPAI), relies on spectral counting. Mass spectrometric detection of peptides is partially dependent on the concentration of the respective compound. Assuming, a high abundant peptide is detected more often during a mass spectrometric analysis, this fact enables an approximate relative quantification of identified proteins based on the number of peptide hits identified for each protein. We used a modified version of the emPAI index to generate an approximate estimation of platelet protein abundance within the current study set in relation to published data. For 935 discrete protein hits derived from the shotgun data, the ratio of observable to observed peptide hits was calculated and results are depicted in Figure 4 (a complete list of emPAI ratios is presented in the supplemental table). Indeed, the highest emPAI indices were calculated for integrin Ib/IIa, which is present at approximately 80 000 copies/platelet. In addition, the components of the gpIb-IX-V complex (~25 000 copies/platelet gpIb/gpIX and ~12 500 copies/platelet gpV58,59) are present among entries with high emPAI indices (Figure 4 top panel) as well. At slightly lower emPAI values, ICAM-2 (3000 copies/platelet) and integrin alpha-2 (2000–4000 copies/platelet)61 fit into the scheme as well. In terms of low abundant proteins, the data correlate as well with the copy numbers of gpV1, P2Y12, and P2Y1 with 1000, approximately 600, and approximately 150 copies/platelet, respectively. Therefore, the current data set can be potentially used to differentiate between high, medium, and low abundant protein species. Although the absolute copy number of an individual protein might not always fit with its position in emPAI ranking (eg, CD36 with 20 000 copies/platelet; prior gpIIB and gpIBA with ~25 000 copies each59), a general accordance was found. However, a major problem remains: the different reported copy numbers for proteins in the literature.

Furthermore, spectral counting may enable quality control of membrane preparations. As can be seen in the inset of Figure 4 (bottom panel), we combined the quantitative information of emPAI values with GO annotation for this purpose. Within the top 100 abundant proteins of the 2-phase membrane separation, 76 proteins were intrinsic to a membrane and 52 proteins could be confirmed to be plasma membrane constituents. The percentage of proteins TRPC6 is supposed to be involved in receptor-activated, diacylglycerol-mediated cation entry in platelets, whereas little is known about TRPV2. Interestingly, we could not detect TRPC1 on human platelets by proteomic means, although its presence was shown previously for mice. A further, although yet uncharacterized potential member of calcium channel proteins was identified with TPCN1 (2 pore calcium channel protein 1). TPCN1 has 12 predicted TMDs (by TMHMM 2.0) and 2 cation channel domains as predicted by SMART (aa’s 143 to 319 and aa’s 478 to 866). It might function as a voltage-gated Ca2⁺ channel across the plasma membrane (by similarity; Uniprot annotation).
that actin may be tightly associated with the plasma membrane in a relative abundance of 20,000 to 25,000 copies. This is in good agreement with the fact that actin within the current preparation indicates in turn an abundance of 2,000,000 copies/platelet. The calculated emPAI value of 36.9 for the actin protein is fairly constant throughout the data sets. Furthermore, the purification process may also be monitored looking for actin contamination by network analysis. The inset shows the STRING algorithm to assess the known interaction partners, which, however, were not part of the network. A large number of known plasma membrane components (several integrins, gpV, gpIX, PECAM-1, etc.) were identified alongside Ras-, Rac-, and Rho-related proteins, which can be easily deduced from the supplemented table. Since membrane proteins are connected to the cytoskeleton, for example, via actin-binding proteins, a range of actin- and cytoskeleton-associated proteins was found as a clustered group as well. They include components of the Arp2/3 complex as well as vinculin or VASP, which is a known interactor of actin. Furthermore, coatamer and vesicle-associated proteins such as SNAPs and SNAREs were identified as interacting units within the data set. As can be deduced from Figure 5, also proteins relating to metabolism, glycosylation processes, as well as proteins of mitochondrial origin could be found to be tightly associated by network analysis.

In general, a first survey of the membrane proteome by STRING already revealed a total of 858 protein-protein interactions present in databases. However, evident from Figure 5, a large number of proteins were not associated with any other membrane or soluble protein. By introducing 250 nodes (see supplemental table for image), representing additional interaction partners, the number of interactions could be raised to 2669. These 250 nodes reflect known interaction partners, which, however, were not part of the current data set.

Discussion

Platelet function in thrombosis and hemostasis is enabled by an intricate interplay of various proteins, small messengers, and ions on various levels. Current research on platelet function is driven mostly by studies on individual proteins, many of which are also studied in knockout models or using antibodies. The results of the current proteome study on membrane proteins can supplement these studies on various levels, especially regarding important plasma membrane interface proteins.

The assembled data set of 1282 proteins, of which 788 proteins were not covered by several proteomic approaches before (Figure 2A), offers a premier repository for rational design of upcoming studies. Comparison of currently studied components with the abundance of serum protein in the membrane preparations—in contrast to approximately 60% serum albumin content in the circulating plasma.
presented accessions can return formerly unknown members of functional protein classes in platelets, as shown briefly in the “Functional characterization” section for the tetraspanins. To deduce suitable targets for functional research and extend the scientific value of the presented platelet protein collection, accession lists from the supplemental material can conveniently be evaluated by a multitude of bioinformatic algorithms, of which some are proposed in Table 2. Examples thereof have already been given by TMD prediction and STRING interaction networks. Moreover, STRING data may serve as origin for potential downstream analysis of signaling pathways by rational search for known binding partners, which were so far uncovered in platelets but known, for example, in other cell types. In addition, shotgun-derived semiquantitative information offers a first estimation of protein abundance and thereby influences the choice of future research targets. The immunoglobulin receptor G6B might serve as an example. Although the receptor was initially described on platelets by proteomic approaches in 2005,1,29 its function remained elusive until the recent works of Senis et al.4 The current data set ranks G6B with an emPAI score of 122 among the high abundant receptors on the platelet surface with possibly profound impact on platelet function. However, no direct conclusions from apparent abundance to functional importance should be drawn without further validation. The mass spectrometric detection of a proteins/peptides within the given workflow is dependent, for example, on ionization properties of peptides, individual protein behavior during membrane purification, or even varying abundance due to biologic differences in platelet populations.

Furthermore, the presented repository on identified peptides is a valid source for sequences to be used in antibody generation. Obviously, proteins may be modified by a multitude of posttranslational modifications (eg, glycosylation). However, the given peptides in the current study have been unambiguously identified in their indicated form (see supplemental table) and can therefore avoid choice of unsuitably modified sequences for antibody generation. Lastly, COFRADIC results were shown to contain valuable information on N-terminal protein sequences, supplementing existing database information.

In total, we estimate the current study to exert a profound influence on the platelet research field and stimulate research on new target proteins for thrombosis and hemostasis.

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen and by the Bundesministerium für Bildung und Forschung is gratefully acknowledged. Parts of the work were furthermore supported by the Sonderforschungsbereich Grant 688 (A.S.).
Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Albert Sickmann, Institute for Analytical Sciences, Bunsen-Kirchhoff-Str 11, 44139 Dortmund, Germany; e-mail: albert.sickmann@isas.de.

References

Platelet membrane proteomics: a novel repository for functional research

Urs Lewandrowski, Stefanie Wortelkamp, Katharina Lohrig, René P. Zahedi, Dirk A. Wolters, Ulrich Walter and Albert Sickmann