Brief report

Activity of the BH3 mimetic ABT-737 on polycythemia vera erythroid precursor cells

Ann Zeuner,1 Francesca Pedini,1 Federica Francescangeli,1 Michele Signore,1 Gabriella Girelli,2 Agostino Tafuri,2 and Ruggero De Maria1

1Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; and 2Department of Cellular Biotechnology and Hematology, University La Sapienza, Rome, Italy

An increased expression of antiapoptotic molecules is often found in malignant cells, where it contributes to their clonal expansion by conferring an improved survival ability. We found that erythroid precursors derived from patients with polycythemia vera (PV) with medium and high JAK2V617F mutation rates often express elevated levels of the antiapoptotic molecules Bcl-2 and Bcl-X_L (6 of 12 patients with 3 to 7 times Bcl-2 and 3 of 12 patients with 4 to 7 times Bcl-X_L than average normal controls) and are more resistant to myelosuppressive drugs than normal erythroblasts. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X_L, and Bcl-W, induced apoptosis preferentially in JAK2V617F-high PV erythroid precursors as compared with JAK2V617F-low or normal erythroblasts. ABT-737 inhibited also the proliferation of PV erythroblasts and interfered with the formation of endogenous erythroid colonies by PV hematopoietic progenitors. Altogether, these results suggest that small-molecule inhibitors of Bcl-2/Bcl-X_L may be used in the treatment of patients with PV with high JAK2V617F allele burden. (Blood. 2009;113:1522-1525)

Introduction

Neoplastic cells are often characterized by ineffective death pathways, resulting in enhanced resistance to apoptosis, which contributes to the expansion of the abnormal clone. The detection of apoptotic defects in malignant hematopoietic cells paved the way for the development of therapeutic agents that kill cancer cells or reset their apoptotic threshold.1 ABT-737 is a synthetic small-molecule inhibitor that binds Bcl-2, Bcl-X_L, and Bcl-W and promotes apoptosis as a single agent in several malignant hematopoietic and nonhematopoietic cells.2-3 Regulators of apoptotic pathways play a key role in the control of erythroid cell expansion.4-5 Above all, Bcl-2 and Bcl-X_L is essential for cell survival in the absence of erythropoietin.10 The discovery of the V617F mutation in the JAK2 tyrosine kinase (JAK2V617F) present in the vast majority of patients with PV opened new opportunities to understand the molecular pathogenesis of PV.11-14 Recently, an association between the presence of the JAK2V617F mutation and an increased resistance to apoptosis induced by death receptors was found in differentiating PV erythroblasts.15 As activated JAK2 can induce both Bcl-X_L and Bcl-2 expression,6-16 we analyzed the levels of these 2 proteins in erythroblasts derived from patients with PV patients. In this report, we show that Bcl-2 and Bcl-X_L are often expressed in PV erythroid precursor cells in relation to JAK2V617F allele burden, and we investigate the effect of the BH3 mimetic ABT-737 on PV erythroblast survival and expansion, with the hypothesis that it may represent a new inhibitor of PV erythropoiesis.

Study design

Cell culture and reagents

CD34+ hematopoietic progenitor cells (HPCs) were purified from the peripheral blood of healthy donors and patients with PV (Table S1, available on the Blood website; see the Supplemental Materials link at the top of the online article), and cultured in serum-free, stem cell factor–free erythroid medium15 with 3 U/mL erythropoietin (for normal HPCs) or 0.3 U/mL erythropoietin (for PV HPCs). Informed consent was obtained in accordance with the Declaration of Helsinki. In 6 patients with PV, the percentage of JAK2V617F alleles was assessed at day 0 and day 6 of culture and indicated that these culture conditions maintained or increased the initial percentage of JAK2V617F alleles (Table S2). Apoptosis induced by ABT-737 (kindly given by Abbott Laboratories, Abbott Park, IL) was evaluated by annexin V FITC/7-amino-actinomycin D staining (Invitrogen Molecular Probes, Eugene, OR). Endogenous erythroid colonies were obtained by culturing 2×10³ peripheral blood mononucleated cells from patients with PV in the presence of 30% fetal bovine serum (FBS). BFU-E (burst-forming unit erythroid) colonies were obtained from normal and PV HPCs by plating 3×10³ CD34+ cells with 1% FBS and 3 U/mL erythropoietin. Anti–Bcl-X_L, anti–Bcl-2, anti–Mcl-1, and anti–GATA-1 (clone N1) antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA). Cytosine arabinoside, hydroxyurea, and anti-agent antibodies were from Sigma-Aldrich (St Louis, MO). The intensity of bands was quantified using Scion Image (Scion Corporation, Frederick, MD). The research reported in this manuscript was approved by the Institutional Review Board.
Levels of Bcl-2 and Bcl-XL expression in erythroblasts derived from 15 healthy donors or 18 patients with PV with different JAK2V617F allele burdens. Values correspond to the quantification of Western blot bands normalized to beta-actin.

Figure 1. PV erythroblasts overexpress Bcl-2 and Bcl-XL and are sensitive to ABT-737–induced apoptosis. CD34+ hematopoietic progenitors isolated from healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid hematopoietic progenitors isolated from CD34+ hematopoietic progenitors isolated from healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid medium containing 3 U/mL erythropoietin (for normal HPCs) or 0.3 U/mL erythropoietin (for PV HPCs) as described in “Study design.” The numbers assigned to PV samples correspond to patients described in Table S1. (A) Western blot analysis of Bcl-2, Bcl-XL, and Mcl-1 levels in erythroblasts of healthy controls (N) and PV patients (PV).

Results and discussion

Pure populations of primary erythroid precursors were obtained from CD34+ cells of healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid hematopoietic progenitors isolated from CD34+ hematopoietic progenitors isolated from healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid medium containing 3 U/mL erythropoietin (for normal HPCs) or 0.3 U/mL erythropoietin (for PV HPCs) as described in “Study design.” The numbers assigned to PV samples correspond to patients described in Table S1. (A) Western blot analysis of Bcl-2, Bcl-XL, and Mcl-1 levels in erythroblasts of healthy controls (N) and PV patients (PV).

of each participating institution as part of a project called “Regulation of Survival and Lineage Commitment of Hematopoietic Progenitor Cells.”

JAK2 mutational analysis

Granulocyte genomic DNA was analyzed for the presence of the JAK2V617F mutation by quantitative real-time polymerase chain reaction (PCR)–based allelic discrimination as described. Patients were classified as JAK2V617F-low/null, JAK2V617F-medium, or JAK2V617F-high based on the percentage of mutant alleles (< 1%, 1%-75%, and > 75% respectively; see also Table S1). A total of 7 patients with PV classified as JAK2V617F-low/null had a percentage of JAK2V617F alleles between 0.1% and 0.88%, while 2 were apparently “true” JAK2V617F-negative patients.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, CA). The percentage of inhibition in Figure 2A was determined as % inhibition = 100 – (B2/B1 × 100), where B1 is the number of vehicle (DMSO)–treated cells and B2 is the number of cells treated with different doses of ABT-737.

of each participating institution as part of a project called “Regulation of Survival and Lineage Commitment of Hematopoietic Progenitor Cells.”

JAK2 mutational analysis

Granulocyte genomic DNA was analyzed for the presence of the JAK2V617F mutation by quantitative real-time polymerase chain reaction (PCR)–based allelic discrimination as described. Patients were classified as JAK2V617F-low/null, JAK2V617F-medium, or JAK2V617F-high based on the percentage of mutant alleles (< 1%, 1%-75%, and > 75% respectively; see also Table S1). A total of 7 patients with PV classified as JAK2V617F-low/null had a percentage of JAK2V617F alleles between 0.1% and 0.88%, while 2 were apparently “true” JAK2V617F-negative patients.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, CA). The percentage of inhibition in Figure 2A was determined as % inhibition = 100 – (B2/B1 × 100), where B1 is the number of vehicle (DMSO)–treated cells and B2 is the number of cells treated with different doses of ABT-737.

Results and discussion

Pure populations of primary erythroid precursors were obtained from CD34+ cells of healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid hematopoietic progenitors isolated from CD34+ hematopoietic progenitors isolated from healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid medium containing 3 U/mL erythropoietin (for normal HPCs) or 0.3 U/mL erythropoietin (for PV HPCs) as described in “Study design.” The numbers assigned to PV samples correspond to patients described in Table S1. (A) Western blot analysis of Bcl-2, Bcl-XL, and Mcl-1 levels in erythroblasts of healthy controls (N) and PV patients (PV).

of each participating institution as part of a project called “Regulation of Survival and Lineage Commitment of Hematopoietic Progenitor Cells.”

JAK2 mutational analysis

Granulocyte genomic DNA was analyzed for the presence of the JAK2V617F mutation by quantitative real-time polymerase chain reaction (PCR)–based allelic discrimination as described. Patients were classified as JAK2V617F-low/null, JAK2V617F-medium, or JAK2V617F-high based on the percentage of mutant alleles (< 1%, 1%-75%, and > 75% respectively; see also Table S1). A total of 7 patients with PV classified as JAK2V617F-low/null had a percentage of JAK2V617F alleles between 0.1% and 0.88%, while 2 were apparently “true” JAK2V617F-negative patients.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, CA). The percentage of inhibition in Figure 2A was determined as % inhibition = 100 – (B2/B1 × 100), where B1 is the number of vehicle (DMSO)–treated cells and B2 is the number of cells treated with different doses of ABT-737.

Results and discussion

Pure populations of primary erythroid precursors were obtained from CD34+ cells of healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid hematopoietic progenitors isolated from CD34+ hematopoietic progenitors isolated from healthy donors and patients with PV and used to analyze the expression of Bcl-2, Bcl-XL, and Mcl-1, 3 antiapoptotic Bcl-2 family members that play a major role in hematopoietic cell survival. Immunoblotting experiments performed on erythroid medium containing 3 U/mL erythropoietin (for normal HPCs) or 0.3 U/mL erythropoietin (for PV HPCs) as described in “Study design.” The numbers assigned to PV samples correspond to patients described in Table S1. (A) Western blot analysis of Bcl-2, Bcl-XL, and Mcl-1 levels in erythroblasts of healthy controls (N) and PV patients (PV).
levels and ABT-737-induced apoptosis did not vary significantly if PV erythroblasts were cultivated with high levels of Epo (Figure S1A,B), thus confirming previous observations that survival pathways in PV erythroblasts are maximally active at low Epo concentrations.15 ABT-737 was able to induce higher levels of mitochondrial depolarization in PV erythroblasts than in normal erythroblasts, suggesting a differential activation of the mitochondrial apoptotic pathway (Figure S2A). However, caspase cleavage was not significantly different between PV erythroblasts and controls (Figure S2B). To assess whether ABT-737 could inhibit the proliferation of erythroid precursors, we analyzed the effect of low doses of this compound on cell growth in liquid or semisolid culture. We found that a prolonged treatment with ABT-737 (but not a short treatment; Figure S3A) inhibited the expansion of JAK2V617F-high PV erythroblasts in liquid culture, whereas it had a significantly lower effect on the proliferation of normal erythroblasts (Figure 2A; left panel: day 10, \(P < .05\); day 13: \(P < .01\); day 15, \(P < .01\); right panel: \(P = .028\) for 5, 10, and 20 nM). The presence of ABT-737 significantly reduced BFU-E colony formation by PV and normal CD34\(^+\) cells in semisolid culture with a preferential inhibitory activity of this compound toward PV HPCs (\(P = .007\); Figure 2B). ABT-737 was also able to effectively inhibit the production of endogenous erythroid colonies by PV HPCs (\(P = .008\); Figure 2C). Treatment with ABT-737 did not produce significant alterations in differentiation nor in cell-cycle distribution of normal and PV erythroblasts (Figure S3B,C). To investigate the mechanism underlying ABT-737–mediated inhibition of erythroblast expansion, we analyzed GATA-1 levels4 in normal and PV erythroblasts treated with low doses of ABT-737. We found that GATA-1 significantly decreased upon ABT-737 treatment in PV erythroblasts but not in normal erythroblasts (\(P < .05\); Figure 2D), indicating a differential extent of caspase-mediated degradation of GATA-1, which may ultimately determine the effect of ABT-737 on cell growth. Taken together, these results indicate that ABT-737, differently from traditional myelosuppressive drugs, is more active on PV erythroblasts than on normal erythroblasts and may find a therapeutic application in the treatment of PV.

Acknowledgments

We thank Stefano Guida for technical assistance and Mauro Biffoni for flow cytometry analysis.

This work was supported by the Italian Association for Cancer Research. M.S. was supported by an Italy-USA fellowship of the Italian Ministry of Health.

Authorship

Contribution: A.Z. designed the study, performed research, and wrote the paper in collaboration with A.T.; F.P. performed experiments together with F.F. and prepared the figures; M.S. performed experiments and statistical analysis; G.G. provided blood samples; and R.D.M. supervised the project.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Ann Zeuner, Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; e-mail: a.zeuner@iss.it.
References

Activity of the BH3 mimetic ABT-737 on polycythemia vera erythroid precursor cells

Ann Zeuner, Francesca Pedini, Federica Francescangeli, Michele Signore, Gabriella Girelli, Agostino Tafuri and Ruggero De Maria