Rapid resolution of GVHD after orthotopic liver transplantation in a patient treated with alefacept

Graft-versus-host disease (GVHD) after transfusion of nonirradiated blood products or solid tumor transplantation is a rare but lethal complication associated with mortality of 80% to 90% and occurs when immunocompetent donor T cells from the graft recognize disparate alloantigens of host cells. This process occurs primarily in immunocompromised hosts. Symptoms are typical of GVHD affecting skin, gut, and liver. Profound pancytopenia due to graft-versus-hematopoiesis effect may occur, described in animal models of transfusion-associated GVHD. Therapies to reverse this process are almost uniformly unsuccessful. Case reports and small series have documented response with agents such as basiliximab, daclizumab, antilymphocyte antibodies, and granulocyte colony-stimulating factor (G-CSF), though response to these agents is inconsistent.

Our patient was a 60-year-old man with cirrhosis status postorthotopic liver transplantation (OLT). At day 20 after OLT the patient reported abdominal pain and emesis and had a fever. His white blood cell count (WBC) was 11.3 k/L (ANC of 8.89 k/L), hematocrit was 31%, and platelet count was 337 k/L. Infectious workup and empiric antibiotics were started. At day 27 the patient developed a generalized, dusky morbilliform rash with reticulated morphology (biopsies showed cytotoxic dermatitis compatible with GVHD grade 2-3) and odynophagia (laryngoscopy revealed mucositis). His WBC nadired to 0.02 k/μL on day 39 (Figure 1). A bone marrow biopsy revealed marked hypocellularity (< 10%) with residual hematopoiesis showing apoptotic bodies, consistent with GVHD. To secure the diagnosis of alloantigen-induced marrow aplasia, 4 specimens were submitted for single tandem repeat (STR) analysis: (1) a buccal swab (recipient DNA); (2) donor DNA–Allogen labs; (3) peripheral blood; and (4) T-cell enriched fraction from peripheral blood. Peripheral blood DNA showed mixed chimerness (11% donor DNA), and the T cell-enriched fraction (81% donor DNA) confirmed the diagnosis of GVHD. The patient remained profoundly pancytopenic despite high-dose steroids, filgrastim support, and rabbit antithymocyte globulin. Because of the patient’s deteriorating condition and lack of response to other therapies, his case was discussed in the transplantation peer review group. Off-label use of the immunosuppressant alefacept was recommended. Rationale and potential side effects were discussed with the patient, who gave consent and subsequently received 30 mg alefacept, followed by 3 additional doses of 30 mg every 3 days. After the initial alefacept dose, his blood counts improved over 9 days to a WBC of 7.49 k/L and platelet count of 31 k/L. His counts remain stable 13 months later.

It is provocative to note the rapidity and durability of his response after alefacept dosing.

Figure 1. Timeline of count nadir and count recovery with respect to administration of immunosuppressive agents.
Alefacept is a novel dimeric fusion protein produced by recombinant DNA technology in a Chinese hamster ovary. It comprises the extracellular CD2-binding portion of the human leukocyte function antigen-3 (LFA-3) linked to the Fc portion of human-IgG1, and selectively targets memory T cells. It is approved for the treatment of psoriasis, and has been studied in patients with steroid resistant/dependent GVHD after HSCT (hematopoietic stem cell transplantation) with some success. Given the dismal responses seen with conventional immunosuppressive treatments for GVHD after transfusion or solid organ transplantation, alefacept may offer a reasonable treatment alternative in a setting where outcomes have generally been fatal. Its use may also provide a clinical model for bone marrow failure states.

Christy J. Stotler, Bijan Eghtesad, Eric Hsi, and Bernard Silver

Acknowledgement: The authors thank Dr Ramon Tiu, who helped with the graphic illustration.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Dr Christy J. Stotler, Cleveland Clinic Foundation, 9500 Euclid Ave, Desk R35, Cleveland, OH 44195; e-mail: stotlec@ccf.org.

To the editor:

NGR and isoDGR are separate moieties binding to different receptors

Bieker et al interestingly reported that NGR peptide-directed targeting of a truncated form of the human coagulation-inducing protein tissue factor (tTF-NGR) is able to induce thrombosis in the tumor vasculature of preclinical models and to inhibit tumor perfusion in humans. This work represents a further piece of evidence indicating that peptides containing the NGR (asparagine-glycine-arginine) motif can selectively bind to tumor vessels and can therefore be exploited for ligand-directed targeted delivery of various drugs and particles to tumors. In addition, it provides support for developing peptide-based targeting approaches for the treatment of cancer.

However, the authors claim that tTF is delivered to blood vessels through the binding mediated by the GNGRAHA linear peptide to both aminopeptidase N (CD13) and αβ3 integrin expressed onto the tumor endothelium. In our opinion, this conclusion may be questioned because the authors neither formally prove that GNGRAHA is able to bind to αβ3 integrin, nor provide indirect evidence of it through the quantitation of Asn deamidation (i.e., Asn → isoAsp/Asp generating new αβ3-binding ligands) of the NGR motif in the tTF-NGR product, a nonenzymatic conversion that can occur at variable extent during manufacturing due to the exposure of the product to varying conditions of pH, temperature, and buffering. In addition, published data demonstrate that NGR-containing peptides other than GNGRAHA bind to CD13 and lack the necessary pharmacophoric requirements to bind to αβ3, providing support for the concept that NGR and isoDGR motifs as 2 separate moieties binding to different receptors. Although different NGR-containing peptides do not necessarily display the same features, including binding properties and affinities along with the extent of in vitro and in vivo stability, Curnis et al showed that in defined experimental conditions (incubation in 0.1 M ammonium bicarbonate buffer, pH 8.5, for 16 h at 37°C), the Asn of the NGR site of both fibronectin fragments and synthetic CNGRCGVRY cyclic peptide (called NGR-2C) is not stable and can undergo deamidation, thus inducing the formation of isoAsp-containing ligands able to bind to αβ3, unlike NGR-2C. However, these experimental conditions are nonphysiologic and induce Asn deamidation with surprisingly rapid kinetics (half-life of 3-4 hours), whereas these kinetics might differ significantly in vivo. Consistently, we hypothesise that a NGR-containing intravenous product in vivo undergoes deamidation with a much longer half-life, thus accompanied by a negligible generation of αβ3 ligands. Therefore, to draw reliable binding predictions, it is critical to quantify the amount of isoAsp content in any NGR-containing drug preparation and to test deamidation kinetics in appropriate in vivo experimental models.

Gian-Paolo Rizzardi and Claudio Bordignon

Conflict-of-interest disclosure: The authors are employees of MolMed SpA.

Correspondence: Gian-Paolo Rizzardi, MolMed, via Olgettina 58, Milan, Italy 20132; e-mail: paolo.rizzardi@molmed.com.

References

Rapid resolution of GVHD after orthotopic liver transplantation in a patient treated with alefacept

Christy J. Stotler, Bijan Eghtesad, Eric Hsi and Bernard Silver