between their and our results on the response of ESAT-6. Of note, the cells from different individuals with TB produce IFN-γ. Published data from a few active TB patients, we also found that CD4+ human chronic human herpesvirus 8 (HHV-8) infection, purified only bind to CD4+ Vδ1 T cells. These responding T cells, produced IFN-γ but not Vδ1 T cells. Most interestingly, CD4+ T cells could inhibit IFN-γ production by Vδ T cells.

Casetti et al observed that CD4+ but not Vδ T cells from 4 patients with active tuberculosis (TB) disease and 4 subjects with latent TB infection (LTBI) responded to ESAT-6 to express IFN-γ. In accordance with their and others’ observations, in our unpublished data from a few active TB patients, we also found that CD4+ T cells, in addition to Vδ T cells, produced IFN-γ in response to ESAT-6. Of note, the cells from different individuals with TB infection had distinct quality of response. The discrepancies between their and our results on the response of Vδ T cells to ESAT-6 might be influenced by many factors. The concern might be that the source of ESAT-6 we purchased from suppliers was different from that Casetti et al used. The various preparations of recombinant antigens, including cloning, sequences, expression, and purification process from different companies, might have different biologic activities. Moreover, differences in the classical and nonclassical major histocompatibility class (MHC) molecules, the affinity to antigenic epitopes, and the distinct biologic features between eastern and western peoples might lead to distinct reactivity to the same antigen. Clearly, it has been reported that Vδ T cells from bovines could react to ESAT-6 by IFN-γ production and proliferation. In addition, several antigenic epitopes/proteins recognized by human Vδ T cells have been identified via CD3δ peptide–based immunobiochemical strategy. These peptides not only bind to Vδ T cells but also activate Vδ T cells. Moreover, in human chronic human herpesvirus 8 (HHV-8) infection, purified viral proteins resulted in Vδ Vδ1 T cell activation. Taken together, we agree with Casetti et al that human Vδ T cells recognize nonpeptidic phosphoantigens, metabolites of the isoprenoid pathway. However, the mechanism by which human Vδ T cells recognized protein antigens remains unclear currently and needs further investigation.

Li Li and Chang-You Wu

Approval was obtained from the Zhongshan School of Medicine, Sun Yat-Sen University institutional review board for these studies. Informed consent was obtained in accordance with the Declaration of Helsinki.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Changyou Wu, MD, PhD, Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; e-mail: changyou_wu@yahoo.com.

References

Among its targets are negative cell-cycle regulators, including the kinase inhibitor protein (KIP) family member p27KIP1, and positive ones, such as cyclin E. In addition, Skp2, p27KIP1, and cyclin E form a tight network controlling S-phase entry.

In various tumors Skp2 is frequently overexpressed and represents a major cause of p27KIP1 protein down-regulation. However, p27KIP1 gene alterations and transcriptional silencing, due to microRNA-dependent repression, promoter methylation, and transcriptional suppressors, is not a rare event, as the authors mention, but a significant source of p27KIP1 inactivation in several malignancies (Table S1, available on the Blood website; see the Supplemental Materials link at the top of the article). Consequently, we cannot exclude the possibility that Skp2 overexpression coexists with transcriptionally silenced and/or mutant p27KIP1. We have observed such a condition with the other KIP member and Skp2 target, p57KIP2.

Based on the above, Skp2 inhibition, in cases with transcriptionally silenced and/or mutant p27KIP1, could result in increased expression of cyclin E with potential deleterious effects. Cyclin E provokes genomic instability, when overexpressed, by producing either DNA damage and/or centrosome amplification. Up-regulation of cyclin E is frequently observed in cancer, and is associated in various malignancies with poor survival.

To test this hypothesis we mimicked the above scenario by silencing Skp2 alone or in combination with p27KIP1 in A549 cancer cells, which express high Skp2 levels. The experiment showed that sole Skp2 silencing resulted in elevation of p27KIP1, reduction of cyclin E expression (Figure 1A,B), and a decrease in growth, while Skp2/p27KIP1 double knockout, recapitulating the proposed scenario, led to increased levels of cyclin E (Figure 1A,B), centrosome amplification (Figure 1B), abnormal mitoses, micronuclei, lobulated nuclei, and nucleoplasmic bridges, features that are indicative of chromosomal instability (Figure 1C). In addition, marked p53 Ser-15 phosphorylation (Figure 1A), indicating a prominent DNA damage response, provides a mechanistic explanation for the observed genomic instability.

Figure 1. Effect of Skp2 silencing alone or in combination with p27KIP1 in A549 carcinoma cell line. (A) Western blot analysis of Skp2, p27KIP1, cyclin E and low-molecular-weight isoforms, Ser15 phosphorylated p53 levels in A549 mock, siSkp2, and siSkp2/p27KIP1-treated cells. (B) Impact of deregulated cyclin E expression on centrosome status after Skp2 and Skp2/p27KIP1 silencing in A549 cells. Immunofluorescence analysis (Texas Red = cyclin E, Oregon Green = γ-tubulin) and counterstaining with DAPI. A549 mock cells demonstrate moderate nuclear staining of cyclin E accompanied by centrosome amplification (top panel, magnification ×600). A549 siSkp2 cells display normal centrosomal profile (arrow) and suppression of cyclin E expression (middle panel). A549 siSkp2/p27KIP1 cells showed increased, cyclin E levels (accumulation of both nuclear and cytoplasmic isoforms) and centrosome aggregates (arrows; bottom panel). (C) Abnormal mitoses, micronuclei, nuclear lobulation, and nucleoplasmic bridges in A549 siSkp2/p27KIP1 cells. Cells were counterstained with DAPI. Histograms depict percentages of abnormal mitoses (P = .001, ANOVA) and micronuclei (P < .001, ANOVA) in A549 mock and A549 siSkp2/p27KIP1-treated cells. Images in panels B and C were viewed through a Zeiss Axiolab microscope with 63 times 0.80, Zeiss Achroplan lens (both Carl Zeiss, AntiSel). Cell spreads were mounted in Fluoromount G. Texas Red was used to detect cyclin E, Oregon Green to detect γ-tubulin, and DAPI as a counterstain (Invitrogen, AntiSel). Images were photographed with a SenSys camera (Photometrics, Tucson, AZ) and processed with SmartCapture VP software version 1.4 (Digital Scientific, Cambridge, United Kingdom).
the full-length but also the low-molecular-weight isoforms.5,6 These isoforms are present in both cytoplasm and nucleus, and have increased affinity for cdk2.5,6 They have been associated with genomic instability, resistance to CIP/KIP inhibition, and poor outcome of patients with various malignancies.5,6

Similarly, is exclusive Skp2 targeting efficient in patients with p27KIP1 haploinsufficiency?9,10 In such cases, SKP2 blocking is effective when the levels of the remaining p27KIP1 allele are up-regulated above a threshold, able to exert its negative effect on cell-cycle progression. Below this threshold the CIP/KIP molecules will be sequestered by the cyclin D/cdk complexes, further promoting cyclin E/cdk2 activity.11

In conclusion, although the findings of Chen et al are significant and important, our results present an additional point of view, which stresses the impact of defining the transcriptional and/or mutational status of p27KIP1 before applying a therapeutic approach based exclusively on Skp2 inhibition.

Marilena Koutsami, Georgia Velimezi, Athanasios Kotsinas, Konstantinos Evangelou, Athanasios G Pavavassiliou, Christos Kittas, and Vassilis G. Gorgoulis

The online version of this letter contains a data supplement.

This work was financially supported by the European Commission Seventh Framework Health Programme Genomic instability in cancer and precancer (FP7-GENICA) grant.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

To the editor:

Platelet components associated with acute transfusion reactions: the role of platelet-derived soluble CD40 ligand

Several independent studies indicate that soluble CD40 ligand (sCD40L) derived and cleaved from platelets is responsible for acute transfusion reactions (ATR).1-3 Ratliff et al5,6 show in this journal that platelets modulate innate and adaptive immunity in mice away from the site of activation and impact antibody-mediated immune responses. Having shown that platelet-derived sCD40L alters human B-cell responses in vitro,6 we examined whether sCD40L in platelet concentrates (PCs) associated with clinical ATR could mediate B-cell responses as an indication of pathophysiologic function. Apheresed PCs were collected and processed with leukocyte reduction (< 106 per unit); suspended in 35% donor plasma and 65% InterSol platelet additive solution (Fenwal, La Chatre, France); prepared with the amotosalen HCl plus UVA light pathogen inactivation procedure (Intercept; Cerus, Concord, CA); and stored at 22°C with shaking for 5 or 7 days before transfusion.7 An active hemovigilance program evaluated the response to platelet transfusion.7 Reported ATR episodes were investigated using residual platelet components associated with ATR. In the 4 investigated cases of ATR (PCs were older than 3 days; Figure 1),8 2 aliquots from each PC (and, for each aliquot, 10 controls not associated with ATR) were prepared. One aliquot was used to assay supernatant fractions and the other to assay platelet lysates using specific, sensitive ELISAs (R&D Systems Europe, Lille, France) targeting a panel of cytokines and chemokines. IL8, CD62p, and platelet-derived growth factor–AB (PDGF-AB) levels were similar between ATR-associated PCs and PCs without ATR. In ATR-associated PCs, supernatant fractions contained higher levels of sCD40L than the control component, consistent with release; in an inverse correlation, the corresponding platelet lysates contained lower levels of sCD40L, consistent with release during storage (\textit{P} < .05). To determine whether the released sCD40L (possibly among other costimulators) was biologically active, we incubated purified B cells, isolated from the blood of healthy donors, with PC supernatants and platelet lysates from PCs either associated or not with ATR. We then measured B-cell production of IL-6, on day 2 of the culture, to identify a production plateau (F.C., unpublished data, April 6, 2006).

Baseline IL-6 concentrations were consistently less than 5 to 10 pg/mL in each control. The addition of 20 \mu L 1/20 diluted “ATR” supernatant samples to 2 × 104 purified B cells in 200 \mu L culture medium9 resulted in increased IL-6 production compared with samples from control PCs (\textit{P} < .05), the corresponding platelet lysates from ATR-associated PCs failed to elicit IL-6 production; recombinant purified sCD40L stimulated IL-6 production (\textit{P} < .05), a cytokine strongly reactive to B cell stimulation. Preincubation of B cells with 5 \mu g/mL CD40-blocking antibodies (R&D Systems Europe and ATCC, Manassas, VA) substantially abrogated IL-6 secretion, unlike isotype-matched control. The partial blocking of CD40 binding on CD40+ B cells strongly suggests a potentially synergistic role in B cells for cytokines other than sCD40L (under investigation) and indicates a sustained role for PC-derived sCD40L.10

These data prompted us to institute a multicenter collaborative study of a larger series of ATR-associated PCs to determine specific interests.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

References

Is exclusive Skp2 targeting always beneficial in cancer therapy?

Marilena Koutsami, Georgia Velimezi, Athanassios Kotsinas, Konstantinos Evangelou, Athanassios G Papavassiliou, Christos Kittas and Vassilis G. Gorgoulis