








from the blood into inflammatory site during adoptive transfer
experiments in thioglycollate-induced peritonitis.38,39 To determine
how CCR2 expression regulates the dynamics of MDSC subpopu-

lations in tumor-bearing mice, we analyzed the kinetics of mono-
cytic cells and neutrophils in BM, blood, spleen, and tumor. In
CCR2�/� mice, the frequencies of monocytic cells in blood, spleen,
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before cell preparation on day 14 of tumor inoculation,
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monocyte-derived macrophages were analyzed by a flow
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and tumor was significantly decreased, whereas monocytes accumu-
lated in the BM, suggesting impairment in the mobilization of
monocytes from the BM to the blood as one aspect of the reduction
of CCR2�/� macrophages in the tumors (Figure S4A). Tumor
progression is also associated with neutrophilia15,16 As expected,
the frequency of blood neutrophils gradually increased in both WT
and CCR2�/� mice with the tumor progression, but compared with
WT mice, neutrophil expansion was accelerated in CCR2�/� mice
(Figure S4B), which may be due to excessive production of G-CSF
in the tumor of CCR2�/� mice (Figure 5B). These data suggest that
intervention of the migration of monocytes by CCR2 blockage is
closely associated with the enhanced tumor infiltration by neutro-
phils and the sequestration of monocytes in the BM.

To determine whether CCR2 is required for the migration of
monocytes from the blood into tumors, we undertook adop-
tive transfer studies. A mixture of equal numbers of
CD45.1�CD45.2�CCR2�/� and CD45.1�CD45.2�CCR2�/� BM
cells were intravenously injected into CD45.1� CD45.2� tumor-
bearing mice. Twenty-four hours after the transfer, the CCR2�/�/
CCR2�/� cell ratio decreased in spleen and blood (37% and 57%
reduction, respectively) but increased 190% in the BM, suggest-
ing the marginalization of circulating CCR2�/� monocytes into
the BM. In the draining and nondraining LNs, no donor-derived
CD11b�Gr-1� cells could be detected (data not shown). It is
noteworthy that the CCR2�/�/CCR2�/� ratio was most severely

reduced within the tumors (88% reduction), suggesting that
CCR2 is also required for the migration of monocytes from the
blood into tumors, in addition to mobilization from the BM to
the blood (Figure S4C-E).

T-cell responses are not enhanced in the absence of
tumor-infiltrating macrophages

Several studies have suggested that monocytic cells rather than
neutrophils are responsible for the suppressive function of
CD11b�Gr-1� “MDSC” through iNOS and ARG1.23 Consistent
with our findings that ARG1 was mainly expressed in macro-
phages, ARG1 mRNA expression was severely decreased in the
tumors from CCR2�/� mice (Figure 6A). Unexpectedly, despite
the reduction in tumor-infiltrating macrophages and ARG1
expression in CCR2�/� mice, CD4 and CD8 T cells were
significantly reduced in the tumors of CCR2�/� mice (Figure
6B). This was not due to an impairment in the induction of
antitumor CD4� or CD8� T cells, because the absolute numbers
of CD4� T cells, Foxp3�CD4� T cells, CD8 T cells, and IFN-��

cells in CD8 T cells were not significantly changed in the
draining LNs of CCR2�/� mice (Figure 6C,D). These results
suggest that a reduction of tumor-infiltrating macrophages is not
sufficient to augment T-cell responses against a tumor.
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Figure 4. Chemokine receptor usage for accumula-
tion of MDSCs in tumor. 3LL tumors were subcutane-
ously inoculated to WT, CCR1�/�, CCR2�/�, CCR5�/�, or
CX3CR1�/� mice. Seven days after tumor inoculation,
when tumor grew to 6-10 mm in diameter, tumor-
infiltrating leukocytes were analyzed by a flow cytometry.
(A) Representative flow cytometric profiles of tumor-
infiltrating CD45�CD11b� cells in WT and CCR2�/�

mice. (B) Percentage of CD11b� cells, macrophages,
and neutrophils in CD45� leukocytes from tumors of WT
or chemokine receptor-deficient mice. (C) Percentage of
CD11b� cells, macrophages, and neutrophils in CD45�

leukocytes from B16 tumor of WT or CCR2�/� mice.
(D) Cryosections of tumors from CCR2�/� and CCR2�/�

mice were subjected to immunofluorescent staining with
antibodies to CD11b (green), F4/80 (red), type IV colla-
gen (blue). Representative image of 3 mice for each
group. (B,C) Graphs represent the mean (	 SD) of
3-5 mice. *P � .05; **P � .01.
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B
Figure 5. Expression of mRNA for chemokines
and myeloid colony stimulation factors in the
tumor of WT and CCR2�/� mice. 3LL tumors
were resected from WT or CCR2�/� mice on days
7 and 14 after tumor inoculation, and the expres-
sion of mRNA for chemokines (A) and myeloid
colony stimulation factors (B) was analyzed by
RT-PCR. Graph represents the mean (	 SD) of
four mice. *P � .05; **P � .01. Data are represen-
tative of 2 independent experiments.
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Tumor development in chemokine receptor-deficient mice

We next examined whether the aberrant mobilization and
migration of monocytes and neutrophils in CCR2�/� mice would
affect the tumor development. Unexpectedly, we found that
tumor growth was not significantly changed in CCR2�/� mice in
both 3LL and B16 s.c. models (Figure 7A,B), although we found
an expansion of the necrotic areas within tumors in CCR2�/�

mice (Figure 7C,D). Although tumor-infiltrating macrophages
have been reported to promote tumor angiogenesis and tissue
remodeling, the densities of CD31� endothelial cells and
collagen fibers were not significantly different between WT and
CCR2�/� mice in the non-necrotic areas of the tumors (Figure
7F,G). Moreover, MMP9 and VEGF mRNA expression was
increased in the tumors of CCR2�/� mice (Figure 7E). These
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results corresponded to our finding that MMP9 was mainly
expressed in neutrophils.

Discussion

Tumor growth is associated with abnormal myelopoiesis as a result
of tumor secretion of colony stimulation factors.25,26 Our results
show that tumor-associated CD11b�Gr-1� MDSCs primarily con-
sist of CD11b�Gr-1hiLy-6Cint neutrophils and CD11b�Gr-1int/dullLy-
6Chi blood monocyte-derived macrophages. Furthermore, with
tumor growth, CD11b�Gr-1low-negaLy-6Cint immature myeloid cells
increased in the BM, blood, and spleen but not in the tumors,
suggesting that large tumors augment myelopoiesis and mobiliza-
tion of immature myeloid cells from BM to the circulation, but still
these immature cells failed to infiltrate into the tumors. We consider
only mature neutrophils and monocytes with appropriate homing
receptors to have been able to infiltrate into the tumors. Our
observations suggest that not only tumor types but also tumor stage
affect the distribution and number of CD11b�Gr-1� MDSC
subpopulations. We suggest that precise identification of specific
changes in the CD11b�Gr-1� MDSC subpopulations and their
distribution during tumor development is required for an improved
understanding of the roles of MDSCs in tumor pathogenesis.

Kusmartsev et al42 have reported that splenic CD11b�Gr-1�

cells from tumor-bearing mice showed early myeloid progenitor-
like properties, such that they could differentiate into mature
macrophages, DCs, and granulocytes in the presence of appropriate
growth factors. However, there is a possibility that G-CSF and
granulocyte-macrophage–colony stimulating factor (GM-CSF) sim-
ply maintain the survival of terminally differentiated neutrophils
and macrophages, respectively, which results in the enrichment of
mature neutrophils or macrophages. Furthermore, it has been
reported that mouse monocytes can differentiate into dendritic cells
in the presence of GM-CSF and IL-4,43 and that monocyte-derived
macrophages themselves express DC markers such as CD11c,
MHC class II, and CD86 after activation.44 Together with our
results showing that CD11b�Gr-1� MDSCs in the peripheral
tissues of tumor-bearing mice were composed primarily of short-
lived, nonproliferating macrophages and neutrophils, it seems more
likely that the differentiation of myeloid lineage cells, except for
the conventional DCs, were primarily occurred in the BM but not
spleen even in the tumor-bearing state.

BrdU incorporation studies and parabiosis experiments sug-
gested that both neutrophils and monocytic cells proliferate primar-
ily in the BM and not in peripheral tissues, even in tumor-bearing
mice. The absence of peripheral proliferation by MDSC subpopula-
tions indicates that the inhibition of MDSCs mobilization from the
BM to the blood or migration from the blood to tumors by targeting
chemokine system would provide a potentially important therapeu-
tic approach for the depletion of MDSCs from tumor tissues.
Furthermore, the BrdU labeling kinetics revealed the unexpected
results that tumor-infiltrating macrophages were replenished more
rapidly than neutrophils. In the BM, 23.3% of CD11b�Gr-1int/dullLy-
6Chi monocyte precursors were labeled with BrdU within
30 minutes of labeling, suggesting that monocyte precursors were
vigorously proliferating in the BM and can be rapidly mobilized
into circulation. This result is essentially consistent with an
observation by Van Furth et al45 that [3H]thymidine-labeled BM
monocyte precursors could be detected within 2 hours and peaked
at 24 hours of labeling. Although we did not address the labeling
kinetics of monocytic cells in steady-state conditions, proliferation

of monocyte precursors may be accelerated by inflammatory
conditions such as those that occur in tumor-bearing mice.46,47

Compared with monocytes, CD11b�Gr-1hiLy-6Cint neutrophils had
relatively slower BrdU incorporation kinetics, suggesting that
neutrophil precursors require a longer time than monocyte precur-
sors for proliferation and maturation in the BM. In the steady-state
condition, postmitotic neutrophils were released from BM within
4 to 6 days, and administration of G-CSF shortened the time to 1 to
2 days.48 Our results showing that BrdU� neutrophils were detected
within 48 hours of labeling suggest that tumor-derived factors such
as G-CSF accelerate the proliferation and release of neutrophil
(precursors) in tumor-bearing mice.

Parabiosis experiments revealed that the residence time of partner-
derived macrophages and neutrophils in the tumors was relatively
longer than that in spleens and blood. Gregory et al49 reported
that apoptosis of neutrophils was accelerated in the Pseudomonas
aeruginosa–infected lungs in G-CSFR�/� mice. Therefore, the produc-
tion of G-CSF in the tumor microenvironment may promote the
maintenance of tumor infiltrating neutrophils, in addition to accelerating
the neutrophil production in the BM.

Although CCR2 has been thought of as the most important
chemokine receptor in the regulation of the monocytic migration in
both steady-state and inflammatory conditions, involvement of
CX3CR1 and CCR5 has been also suggested.50,51 Our results
suggest that in the tumor-bearing mice, CCR2 has a major role in
controlling both the mobilization of monocytes from the BM to the
blood and the migration from the blood to tumor. However,
tumor-infiltrating macrophages are also marginally reduced in
CCR5�/� mice, but not in CX3CR1�/� mice. Our flow cytometric
analysis showed that CCR5 was expressed on tumor-infiltrating
macrophages but not on blood monocytes (Figure S3A and data not
shown). Furthermore, we saw no significant difference in the
efficiency of infiltration into tumors by adoptively transferred
CCR5�/� and CCR5�/� BM monocytes. Tyner et al52 reported that
CCL5-CCR5 interaction provides antiapoptotic signals for macro-
phages during viral infection. Thus, CCR5 may not contribute to
monocyte migration from blood to tumor but may be involved in
the survival of tumor-infiltrating macrophages. In this context,
whether chemokine system might affect the function of MDSC
subpopulations at the cellular level independent of the migration
remains to be elucidated.

Kitamura et al53 have recently demonstrated that CCL9-CCR1
interactions mediated the marginalization of CD11b�CD34� “im-
mature myeloid cells” to the invasion front of colorectal cancer and
promoted tumor invasion. However, we did not detect distinct
population expressing CD11b�CD34� in our s.c. tumor model, and
neither the number of tumor infiltrating CD11b� cells nor tumor
growth was changed in CCR1�/� mice, which may be due to
differences among the tumor models. Moreover, it is important to
keep in mind that transplanted tumors may differ from spontaneous
tumors in inflammatory conditions, including chemokine and
cytokine microenvironments, which may affect the patterns of
infiltrating cells. Further study is therefore needed to elucidate the
differences and similarities in the regulation of myeloid cell
dynamics between transplanted and spontaneous tumors.

The reduction of macrophages was associated with the aberrant
excessive accumulation of neutrophils in the tumor of CCR2�/�

mice. This observation suggests that there might be an inverse
relationship between macrophage and neutrophil infiltration in
tumors. Likewise, an inverse relationship has been observed in the
op/op mice infected with Listeria monocytogenes, in which the
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recruitment of blood monocytes to inflamed tissues was signifi-
cantly reduced but neutrophils aberrantly accumulated.54 G-CSF is
not only the pivotal growth factor for neutrophil development but
also mediates mobilization of neutrophils from the BM to the
circulation through disrupting neutrophil retention by CXCL12–
CXCR4 interaction.41 Therefore, excessive production of CXCR2
ligands and G-CSF at tumor site in CCR2�/� mice might synergis-
tically induce the aberrant accumulation of neutrophils in the
tumors of CCR2�/� mice. Further studies are needed to elucidate
the mechanisms that induce excessive local production of CXCR2
ligands and G-CSF at tumor sites in the absence of macrophages in
CCR2�/� mice.

It is generally accepted that monocytic cells are responsible for
the suppressive function of MDSCs, and our results demonstrating
that ARG1 was highly expressed by macrophages support this
hypothesis. However, the significant reduction in blood monocytes
in CCR2�/� mice did not augment IFN-�� effector CD8 T cells in
the draining LNs but resulted rather in the reduction of tumor-
infiltrating T cells. Because monocytic cells and neutrophils are
rarely detected in draining LNs even in WT mice, and the number
of CD4� T cells, CD8� T cells, and IFN-��CD8� T cells was not
changed in the draining LNs of CCR2�/� mice, MDSCs may not be
directly involved in the induction of antitumor effector T cells. It is
possible that the reduction of TILs in CCR2�/� mice may be due to
the aberrant neutrophil accumulation, because they produce pro-
apoptotic factors, including ROS and neutrophil serine proteases.18

Furthermore, neither vascularity nor tumor growth was signifi-
cantly different between WT and CCR2�/� mice. Several studies
have suggested that BM-derived CD11b� myeloid cells play a
pivotal role in angiogenesis via MMP9.53,55 Therefore, even though
macrophages may have an important role in angiogenesis by
producing angiogenic factors, other accessory cells such as neutro-
phils could also support angiogenesis in tumor.

In conclusion, we report that tumor-associated CD11b�Gr-1�

MDSCs were composed primarily of BM-derived CD11b�Gr-
1hiLy-6Cint neutrophils and CD11b�Gr-1int/dullLy-6Chi macro-
phages. However, CD11b�Gr-1low-negaLy-6Cint immature myeloid
cells were increased in the BM, blood, and spleen but not in the
tumors of morbid mice, unless the tumor burden exceeded 10% of
body weight. In vivo BrdU labeling and parabiosis experiments

revealed that tumor-infiltrating macrophages were replenished
more rapidly than neutrophils. In tumor-bearing mice, the dynamic
turnover of tumor-infiltrating monocytes was mediated by CCR2,
and CCR2 deficiency caused striking conversion of infiltrating
cellular dominance from macrophages to neutrophils in the tumor
with the excessive production of CXCR2 ligands and G-CSF in the
tumor without affecting tumor growth. Simultaneous blockage of
the migration of macrophages and neutrophils will further reveal
the role of tumor-infiltrating macrophages and neutrophils in tumor
growth and development and may provide a novel strategy for
therapeutic intervention.
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