Regulation of COX-2–mediated signaling by α3 type IV noncollagenous domain in tumor angiogenesis

Chandra Shekhar Boosani,1 Arjuna P. Mannam,2 Dominic Cosgrove,3 Rita Silva,4 Kairbaan M. Hodivala-Dilke,4 Venkateshwar G. Keshamouni,5 and Akulapalli Sudhakar1,6,7

1Cell Signaling and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE; 2Department of Neurology, University of Connecticut School of Medicine, Hartford Hospital; 3Gene Expression Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE; 4Cancer Research UK, Cell Adhesion and Disease Laboratory, Richard Dimbleby Department of Cancer Research, St Thomas’ Hospital, London, United Kingdom; 5Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor; 6Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE; 7Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha

Human α3 chain, a noncollagenous domain of type IV collagen [α3(IV)NC1], inhibits angiogenesis and tumor growth. These biologic functions are partly attributed to the binding of α3(IV)NC1 to αVβ3 and αβ3 integrins. α3(IV)NC1 binds αVβ3 integrin, leading to translation inhibition by inhibiting focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathways. In the present study, we evaluated the role of α3β1 and αVβ3 integrins in tube formation and regulation of cyclooxygenase-2 (COX-2) on α3(IV)NC1 stimulation. We found that although both integrins were required for the inhibition of tube formation by α3(IV)NC1 in endothelial cells, only α3β1 integrin was sufficient to regulate COX-2 in hypoxic endothelial cells. We show that binding of α3(IV)NC1 to αβ3 integrin leads to inhibition of COX-2–mediated pro-angiogenic factors, vascular endothelial growth factor, and basic fibroblast growth factor by regulating IkBα/NFκB axis, and is independent of αVβ3 integrin. Furthermore, β3 integrin–null endothelial cells, when treated with α3(IV)NC1, inhibited hypoxia-mediated COX-2 expression, whereas COX-2 inhibition was not observed in α3 integrin–null endothelial cells, indicating that regulation of COX-2 by α3(IV)NC1 is mediated by integrin αβ3. Our in vitro and in vivo findings demonstrate that αβ3 integrin is critical for α3(IV)NC1-mediated inhibition of COX-2–dependent angiogenic signaling and inhibition of tumor progression. (Blood. 2007;110:1168-1177)

© 2007 by The American Society of Hematology

Introduction

Tumor angiogenesis is a complex process consisting of endothelial cell (EC) proliferation, migration, vascular basement membrane reorganization, and new lumen (tube) formation.1-3 It is also required for a variety of physiopathologic processes, including development and wound-tissue regeneration.4,5 Because angiogenesis plays a predominant role in tumor growth and invasion, antiangiogenic molecules may have therapeutic potential in cancer.6,7 In the past decade, several antiangiogenic molecules have been identified from the vascular basement membrane and proteins such as angiostatin of plasminogen, which are circulating endogenously and may inhibit tumor growth.8,9 In addition, researchers identified that several new functions of the type IV collagen noncollagenous 1 domains (NC1) of certain α-chains display antiangiogenic and antitumorigenic activity.10 The capacity of the exogenously supplemented α1(IV)NC1 and α2(IV)NC1 domains to inhibit tissue development in vivo was first described in Hydra vulgaris.12 The antiangiogenic and antitumorigenic activities of type IV collagen NC1 domains appear to be mediated by binding to integrins in ECs.11,13-16 These NC1 domains exert their antiangiogenic effects by direct binding to newly formed tumor vasculature or proliferating ECs, where they induce apoptosis or inhibit EC signaling.11,14,15,17-21 The mechanism of action of several of these NC1 domains is attributed to their specific interactions with different cell surface integrins.11,14-17,19,21-23 For example, α1(IV)NC1 binds to integrin α1β1 and regulates hypoxia-associated factors in ECs.15,24 α2(IV)NC1 binds to α1β1, αVβ3, and αβ5 integrins, and regulates antiangiogenic action by inhibiting PI3-K and promoting apoptosis.11,18-20 α3(IV)NC1 binds to integrins αβ3 and αβ1, and regulates PI3-K/4E-BP1 pathway.11,14,17,21 α6(IV)NC1 regulates antiangiogenic actions by binding to integrin αβ3.31 Among all these type IV collagen NC1 domains, the α3(IV)NC1 domain is the best characterized with regard to its potent antiangiogenic properties. The signaling mechanisms by which these molecules regulate antitumorigenic activities in the hypoxic tumor bed are not known.

In this study we have identified that recombinant α3(IV)NC1 protein binds to integrins αVβ3 and αβ3, and its antiangiogenic functions appear to be mediated by these 2 integrins. It was recently identified that integrin αβ3, a nonclassical collagen-binding integrin, is a novel functional receptor for soluble α3(IV)NC1 and transdominantly inhibits the activation of αVβ3 integrin in ECs.21 Similarly, integrin αβ3 has been demonstrated to alter the functions of other integrins and also play a crucial role in kidney and lung organogenesis, and to regulate hair follicle development.25-28
Inhibitors of cyclooxygenase enzymes (COX-2) are known to block angiogenesis in models of tissue repair and in several solid tumor models.29,33 Because hypoxia-regulated COX-2 is a major stimulus for angiogenesis, the aim of this study was to determine the molecular mechanism(s) of α3(IV)NC1-mediated inhibition of hypoxia-induced COX-2 in mouse lung ECs (MLECs). Here we show that α3(IV)NC1 regulates expression of hypoxia-mediated COX-2 and its associated effector molecules in vitro and in vivo. We also show that α3β1 (and not αVβ3) integrin receptor binds to the α3(IV)NC1 domain and regulates COX-2–mediated signaling. Inhibition of COX-2 expression is observed in integrin β3-null MLECs, and not in α3-null MLECs, when treated with α3(IV)NC1, supporting the hypothesis that this inhibition is mediated through integrin α3β1. Thus, while both integrin α3β1 and αVβ3 are involved in the inhibition of tube formation mediated by α3(IV)NC1, integrin α3β1 appears to play a key role in mediating the regulation of COX-2–mediated antitumorigenic activity of α3(IV)NC1 domain.

Materials and methods

The Institutional Animal Care and Use Committee at Boys Town National Research Hospital approved all procedures involving animals. Primary cow pulmonary artery ECs were purchased from Clonetech, San Diego, CA. SCC-PSA1/tetradacarcinoma tumor cells were obtained from the ATCC (Manassas, VA). Anti-integrin antibodies antimouse (BD Biosciences PharMingen, San Diego, CA). SCC-PSA1/teratocarcinoma tumor cells were obtained from the Research Hospital approved all procedures involving animals.

Preparation of primary mouse lung ECs

MLECs were isolated from 10- to 14-week-old wild-type or β3 integrin-deficient mice. α3 integrin-null–immortalized ECs generated from newborn mice, which are SV40 large T-antigen–positive. Briefly, intracellular adhesion molecule-2 expressing MLECs were enriched using rat anti-mouse intracellular adhesion molecule-2 conjugated to magnetic beads. Primary MLECs were positive for the expression of endothelial-specific marker; VE-cadherin was at cell junctions as reported previously.15,32

Expression of recombinant α3(IV)NC1

The sequence encoding human α3(IV)NC1 was polymerase chain reaction-amplified using total RNA isolated from human placenta and Super Script One-Step (Invitrogen, Carlsbad, CA) reverse-transcription polymerase chain reaction system supplemented with 5 units of Pfu polymerase per reaction. The forward primer (5′-CGCCATATGCGGTGTAGGATGAGTC-3′) and reverse primer (5′-GGGAGATCTCTAGGTCTTCTTCTTCT-3′) sequences were modified to incorporate NdeI and BglII restriction sites and were used to amplify a 720-bp piece of DNA encoding 240 amino acids of a noncollagenous protein domain from α3 type IV collagen.33 Polymerase chain reaction amplification was performed in a PTC-100 Programmable Thermal Controller from MJ Research (Waltham, MA). Amplification was performed according to the instructions in reverse-transcription polymerase chain reaction manual and the resulting amplicon was cloned into pBSISKP vector at EcoRI site and the recombinant clones were identified by blue-white selection. The recombinant clones were digested with NdeI and BglII to release the coding sequence for α3(IV)NC1, which was ligated into pAcHILT-A transfer vector (BD Biosciences Pharmingen, San Diego, CA) predigested with the same restriction enzymes and the resulting recombinant transfer vector, pAcHILT-A/α3(IV)NC1, was cotransfected into SF-9 cells as previously reported.13,24,34,35

Cell adhesion assay

Briefly, 96-well plates were coated with α3(IV)NC1 (10 µg/mL) overnight at 4°C. After 12 hours, nonspecific binding sites were blocked with 5% fetal bovine serum at 37°C for 2 hours. MLECs (1.5 × 10^5 cells/mL) were preincubated with indicated integrin antibodies (100 µg/mL) for 15 minutes and 100 µL of cell suspension were added to each well and incubated at 37°C for approximately 2 hours. The attached cells were fixed with 4% paraformaldehyde, stained with 0.1% crystal violet, and lysed with 10% acetic acid. Cell adhesion was quantified by reading the plates at 595 nm with a microtiter plate reader as described previously.14,16,36

Proliferation assay

A suspension of 7000 MLECs/well in a 96-well plate was used in proliferation assay. Cells were grown overnight in a 96-well plate precoated with fibronectin (10 µg/mL) under 0.5% fetal bovine serum with penicillin/streptomycin. After 24 hours, the medium was replaced with medium containing 20% fetal calf serum with different integrin proteins (1 µM) with and without α3(IV)NC1 (1 µM). After 48 hours the cells were washed and stained with methylene blue as reported previously.8

Tube formation assay

A suspension of 50 000 MLECs in EGM-2 medium without antibiotic was plated on top of the matrigel-coated wells. The cells were treated with or without α3(IV)NC1 or with and without α3β1 or αVβ3 and α3(IV)NC1 proteins (1.0 µM), as indicated in Figure 3. Phosphate-buffered saline in triplicate wells was used as control. Cells were incubated for 48 hours at 37°C and viewed using a Leitz Fluovert microscope as described previously.14,15 The average number of tubes formed in 3 independent experiments was showed.
Cell lysis, immunoprecipitation, and immunoblotting

MLECs were lysed for 30 minutes in ice-cold RIPA lysis buffer. After centrifugation, cleared supernatants were incubated for 2 hours at 4°C with continuous mixing with different integrin antibodies, or IgG coupled to protein A-Sepharose as reported previously.14,15,17 For immunoblotting, samples were separated using SDS-PAGE, transferred to nitrocellulose, blocked with 5% nonfat dry milk in Tris-buffered saline buffer, and probed with primary antibodies. Antibody binding was detected using peroxidase-labeled second antibody and enhanced luminescence (ECL) kit as described.15

Cell-signaling experiments

For cell-signaling experiments, 10^6 MLECs were seeded into 10-cm^2 dishes coated overnight with FN (10 μg/mL). According to the experimental protocol, the cells were preincubated with α3(IV)NC1 for 15 minutes. The cells were lysed and the cell extracts analyzed by SDS-PAGE and immunoblotting using antibodies specific to phosphorylated and unphosphorylated proteins as described previously.14,15

Cytology experiments

MLECs were grown to 70% confluence, serum-starved, and stimulated with 5 ng/mL VEGF, 10 ng/mL bFGF, and seeded on FN-coated 8-chamber slides. The slides were exposed to hypoxia in the presence of α3(IV)NC1 and cell proliferation was evaluated. The results are shown as mean (± the standard error of the mean [SEM]) of triplicate wells. *P < .05 and **P < .01. (B) Proliferation assay. Similar to panel A, cells were preincubated with indicated integrin proteins with and without α3(IV)NC1 and cell proliferation was evaluated. The results are shown as mean (± the standard error of the mean [SEM]) of triplicate wells. *P < .05, α3(IV)NC1 without vs with α3(IV)NC1 functional binding integrins. **P < .008, α3(IV)NC1 without vs with α3(IV)NC1 + αVβ3 integrins together. (C-I) Identification of α3(IV)NC1 functional binding integrins. MLECs were treated with α3(IV)NC1 for approximately 6 hours and extracts were immunoprecipitated with anti-α3(IV)NC1 antibody or control IgG. Immunoprecipitates were fractionated by SDS-PAGE and immunoblotted with anti-α3(IV)NC1, αV, α3, β3, β1, α1, and α5 antibodies. Crude cell lysate was used as a positive control.

Figure 1. Blocking of integrin β1 and β3 inhibits adhesion to α3(IV)NC1 domain. (A) Cell adhesion assay. MLECs were seeded onto a 96-well plate coated with α3(IV)NC1 in the presence of the indicated integrin antibodies and cell adhesion was evaluated. Values are means (± the standard error of the mean [SEM]) of triplicate wells. Differences between 3 independent experiments control IgG and various integrin antibodies treated cells binding were significant. *P < .05 and **P < .01. (B) Proliferation assay. Similar to panel A, cells were preincubated with indicated integrin proteins with and without α3(IV)NC1 and cell proliferation was evaluated. The results are shown as mean (± the standard error of the mean [SEM]) of triplicate wells. *P < .05, α3(IV)NC1 without vs with α3(IV)NC1 and αVβ3 integrins. **P < .008, α3(IV)NC1 without vs with α3(IV)NC1 + αVβ3 integrins together. (C-I) Identification of α3(IV)NC1 functional binding integrins. MLECs were treated with α3(IV)NC1 for approximately 6 hours and extracts were immunoprecipitated with anti-α3(IV)NC1 antibody or control IgG. Immunoprecipitates were fractionated by SDS-PAGE and immunoblotted with anti-α3(IV)NC1, αV, α3, β3, β1, α1, and α5 antibodies. Crude cell lysate was used as a positive control.

Hypoxia experiments

Wild-type, β3, or α3 integrin-null ECs or cow pulmonary artery ECs (10^6) were serum-starved, trypsinized, and seeded on 10-cm FN-coated plates. Cells were exposed to hypoxia (oxygen concentration 0%-1%) using a modular incubator chamber (Billumps-Rothenberg; Del Mar, CA) in the presence of α3(IV)NC1 (1 μM), IFN-α (50 units/mL), or COX-2 inhibitor celecoxib (100 μM) for 12 to 24 hours in complete medium. Total cellular RNA and cytosolic extracts were prepared as previously reported.15,38

Immunohistochemical staining

Briefly, 4-μm frozen tumor sections were fixed in 100% acetone for 3 minutes at −20°C and air-dried. The sections were incubated with primary antibodies (ie, rat antimonoclonal CD31 and rat antimonoclonal COX-2 antibodies) at room temperature for 60 minutes. The sections were subsequently washed with phosphate-buffered saline and incubated with tetramethyl rhodamine–conjugated secondary antibody at room temperature for 60 minutes. The staining was analyzed using a fluorescence microscope; Zeiss AX10 (Carl Zeiss, Sherin Scientific, Shawnee, KS); after 60 minutes. In each group, the numbers of CD31-positive blood vessels were counted in 10 to 15 fields at 100× magnification in a blinded fashion as previously described.15

In vivo study of angiogenesis using matrigel plug assay

Angiogenesis was measured in matrigel plugs (500 μL) containing heparin with and without bFGF or VEGF, and α3(IV)NC1 proteins were injected subcutaneously into the right and left sides of 12-week-old male 129/Sv mice at sites lateral to the abdominal midline. As a negative control, matrigel with heparin alone was injected in a similar manner. Animals were killed 6 days after matrigel injection. The matrigel plugs were recovered, and half of the control and the α3(IV)NC1–treated plugs from each group were fixed in 4% paraformaldehyde or 10% formalin. The matrigel was embedded in paraffin and sectioned and stained with hematoxylin and eosin. The other matrigel plugs were dispersed in phosphate-buffered saline and incubated at 4°C overnight. Hemoglobin levels were determined with Drabkin solution according to the instructions of the manufacturer. This assay was performed as previously described.40

In vivo tumor studies using 129/Sv mice

Twenty male 6-month-old mice were used for this study. Mouse backs were shaved and 0.5 × 10^6 SCC-PSA1/arterocarcinoma cells were injected subcutaneously into the back of each mouse; 10 days after the injection, the mice were divided into 2 groups (10 each). For the experimental mice, α3(IV)NC1 was intravenously injected daily at 1 mg/kg per body weight or 30 μg per mouse, while only sterile phosphate-buffered saline was injected.
into the control mice. When control tumors reached 3.0 cm³, mice were killed and the tumor and other organs were frozen for histologic analysis as described previously.15,41

Measurement of circulating ECs

Mouse blood was collected (400 to 500 μL) in EDTA (ethylenediaminetetraacetic acid)/heparin into microcentrifuge tubes. Plasma was separated and 300 μL of DMEM supplemented with 10% fetal bovine serum was added to each tube. Red blood cells were removed with red blood cell lysis solution and the mixture was placed on 8-chamber slides. After a 6-hour incubation at 37°C, the attached ECs were stained with anti-VEGFR2 or CD31 antibody. The positive cells were counted under the fluorescence microscope in 10 fields at a magnification of 200× as described previously.15

Statistical analysis

Statistical differences between control and α3(IV)NC1-treated tumor groups were calculated using Student t test or Welch t test. ANOVA was used to determine statistical differences among the groups. As needed, further analysis was performed using t test with conferring correction to identify significant differences. P less than .001 was considered statistically significant.

Results

Identification of α3β1 and αVβ3 as functional integrin receptors for α3(IV)NC1

α3(IV)NC1 was shown to be an antiangiogenic molecule with significant antitumor activity.11 α3(IV)NC1 interacts with several integrins on ECs, including αVβ3, CD47/integrin-associated protein, α5β1, αVβ5, and α3β1, and it has been postulated that these interactions may mediate its antiangiogenic activity.11,16,21,42,43 We therefore performed integrin-binding experiments to characterize the functional roles of αVβ3 and α3β1 integrins in mediating the distinct antiangiogenic/antitumorogenic properties of α3(IV)NC1 in ECs. Binding of ECs to α3(IV)NC1-coated plates was inhibited by blocking with antibodies specific for β1, β3, α3+β1, αVβ3, or β1+β3 integrins, whereas no significant effect was observed using blocking antibodies specific for αV, α3, and α1, confirming that α3(IV)NC1 is not binding to these integrin subunits (Figure 1A). We have further confirmed that soluble α3β1 and αVβ3 integrin proteins could bind to α3(IV)NC1 precoated culture plates and subsequently inhibit attachment of ECs to α3(IV)NC1 (data not shown). These experiments confirm that integrins α3β1 and αVβ3 may serve as functional receptors for the α3(IV)NC1 molecule. Binding of ECs to α3(IV)NC1-coated plates was significantly inhibited by α3+β1 and αVβ3 integrin antibodies, whereas α5β1 or α1β1 or α2β1 integrin antibodies had no significant effect (data not shown). Preincubation of ECs with α3β1, αVβ3, or α3β1+αVβ3 integrin proteins has no significant effect on proliferation, whereas preincubation of ECs with α3(IV)NC1 significantly decreased proliferation of ECs (Figure 1B). In the same experiment, addition of equimolar concentrations of soluble α3β1, αVβ3, or α3β1+αVβ3 integrin proteins captured α3(IV)NC1 and reversed the inhibition of ECs proliferation (Figure 1B). These results support the hypothesis that the antiproliferative action of α3(IV)NC1 is mediated by α3β1 and αVβ3 integrins, suggesting that α3β1 and αVβ3 integrins are functional receptors for α3(IV)NC1. α3(IV)NC1 binding to α3β1 and αVβ3 integrins was further confirmed by coimmunoprecipitation experiments (Figure 1C-I).

α3(IV)NC1 binds to α3β1 and αVβ3 integrins and regulates tube formation in ECs cultured on matrigel

We tested the antiangiogenic activity of α3(IV)NC1 by tube formation assay using ECs cultured on matrigel. Tube formation

![Figure 2. Tube formation assays.](https://www.bloodjournal.org)
We investigated the role of \(\alpha3(IV)NC1\) significantly inhibited ECs tube formation on matrigel matrix (Figure 2A; \(\alpha3(IV)NC1\)). Preincubation of cells with \(\alpha3\beta1\)-integrin protein had no effect on tube formation (Figure 2A \(\alpha3\beta1\)). Preincubation of ECs with equimolar mixture of \(\alpha3\beta1\) and \(\alpha3(IV)NC1\) protein, reversed the inhibitory affect of \(\alpha3(IV)NC1\) by 50% (Figure 2A \(\alpha3\beta1\) + \(\alpha3\beta1\)). Preincubation of ECs with equimolar mixtures of \(\alpha3\beta1\) and \(\alpha3(IV)NC1\) protein had no effect, whereas preincubation of ECs with equimolar mixtures of \(\alphaV\beta3\) integrin and \(\alpha3(IV)NC1\) protein reversed the inhibition of tube formation action of \(\alpha3(IV)NC1\) by 45% (Figure 2A \(\alpha3\beta1\) + \(\alpha3\beta1\)). These results confirm that the antiangiogenic/antitumorogenic action of \(\alpha3(IV)NC1\) may be mediated through \(\alphaV\beta3\) and \(\alpha3\beta1\) integrins. To further confirm this observation, ECs were preincubated with equimolar mixtures of \(\alphaV\beta3\) and \(\alpha3\beta1\)-integrin proteins, which had no effect on tube formation, whereas preincubation of ECs with equimolar mixture of \(\alpha3\beta1+\alphaV\beta3\) integrins and \(\alpha3(IV)NC1\) protein reversed the tube formation inhibitory action of \(\alpha3(IV)NC1\) by 90%, suggesting that the 2 integrins function additively in the tube formation assay (Figure 2A; \(\alpha3\beta1+\alphaV\beta3+\alpha3(IV)NC1\)). Such reversal of inhibition is not observed with soluble \(\alpha3\beta1\) integrin and \(\alpha3(IV)NC1\) proteins in tube formation (data not shown). The number of tubes formed in 3 independent experiments are shown in the graph (Figure 2B).

\(\alphaV\beta3\) and \(\alpha3\beta1\) integrin-dependent regulation of FAK and Akt phosphorylation by \(\alpha3(IV)NC1\)

We investigated the role of \(\alpha3\beta1/\alphaV\beta3\) integrin and its effector kinase, focal adhesion kinase (FAK)/Akt, in \(\alpha3(IV)NC1\)-mediated antiangiogenic functions in ECs. We observed that \(\alpha3(IV)NC1\) treatment leads to inhibition of sustained FAK/Akt phosphorylation on FN matrix (Figure 3A,B, lanes 3 and 5). Preincubation of ECs with equimolar mixtures of \(\alpha3\beta1\) and \(\alpha3(IV)NC1\) proteins on a FN matrix reversed the inhibitory action of \(\alpha3(IV)NC1\) on Akt downstream signaling. We observed that \(\alpha3\beta1\) and \(\alphaV\beta3\) integrins inhibits FAK downstream signaling.

Effect of \(\alpha3(IV)NC1\) on NF\(\kappa\)B and COX-2-mediated cell signaling

Integrins transduce biochemical signals across the cell membrane (outside-in signaling) via activation of intracellular signaling pathways, which include phosphatidylinositol 3-kinase and mitogen-activated protein kinase family members. Activation of cytosolic kinases by integrin-linked transmembrane signaling leads to activation of NF\(\kappa\)B to regulate gene expression and cell survival. Here, we examined the role of the NF\(\kappa\)B signaling cascade in \(\alpha3(IV)NC1\)-mediated inhibition of cellular functions when cells were cultured on FN matrices in hypoxic conditions. Attachment of MLECs to FN via \(\alpha3\beta1/\alphaV\beta3\) integrins activated the FAK/Akt

![Figure 3. FAK and Akt phosphorylation.](image-url)
pathway. Pretreatment of MLECs with α3(IV)NC1 before plating on FN matrix inhibited the sustained phosphorylation of IκB-α (Figure 3F top panel). ECs exposed to hypoxia in the presence of α3(IV)NC1 (1 μM) for 60 minutes inhibited NFκB nuclear translocation (Figure 3G; H; α3(IV)NC1).

Additional experiments were designed to address whether regulation of NFκB activation by α3(IV)NC1 regulates other hypoxia factors such as COX-2, bFGF, and VEGF, which are key players in tumor angiogenesis. Cultured ECs, when treated with α3(IV)NC1 under hypoxic conditions, showed inhibition of COX-2 mRNA expression (Figure 4A). Similarly, Western blot analysis of cytosolic extracts revealed that α3(IV)NC1 treatment inhibited COX-2 protein expression in hypoxic ECs (Figure 4B). Surprisingly, α3(IV)NC1 inhibits COX-2 expression in β3 integrin-null MLECs, suggesting that α3(IV)NC1 regulation of COX-2 expression is independent of α3β3 integrin (Figure 4C). These results were further confirmed by immunohistochemical staining of α3(IV)NC1 binding to β3 integrin-null MLECs and inhibiting COX-2 expression (Figure 4D). Furthermore, α3(IV)NC1 inhibited upregulation of bFGF mRNA and protein levels in response to hypoxia in cow pulmonary artery ECs (Figure 4E,F). COX-2 mediated upregulation of VEGF expression in hypoxic ECs was also modulated by α3(IV)NC1 (Figure 4G). To further confirm that the regulation of COX-2 expression depends on α3β1 integrin, α3 integrin-null ECs were treated with α3(IV)NC1, and it was observed that COX-2 expression was not affected (Figure 4H; 12 and 24 hours treated with α3(IV)NC1). These results confirm that COX-2 expression is mediated by α3(IV)NC1 through α3β1 integrin.

Regulation of VEGF-induced and bFGF-induced neovascularization by α3(IV)NC1

We evaluated the effects of α3(IV)NC1-regulated VEGF-mediated and bFGF-mediated angiogenesis in vivo using matrigel matrix plugs in 129/Sv mice. In vivo matrigel plugs containing VEGF and bFGF were used to assess the role of α3(IV)NC1 in inhibiting growth factor-induced neovascularization. α3(IV)NC1 significantly inhibited (nearly 88%) VEGF-induced and bFGF-induced neovascularization in the matrigel plugs in mice (Figure 5A). The number of blood vessels were as follows: VEGF + α3(IV)NC1, 6.45 (± 0.35); bFGF + α3(IV)NC1, 7.25 (± 0.25); and controls, VEGF, 30.5 (± 3); bFGF, 32 (± 1.5, Figure 5B). The hemoglobin contents in VEGF control were 8.5 g/dL (± 1.3 g/dL, n = 6) or bFGF control 7.8 g/dL (± 1.5 g/dL, n = 6; Figure 5C). In contrast, the hemoglobin contents of VEGF + α3(IV)NC1 treated was 1.95 g/dL (± 0.15 g/dL, n = 6) and bFGF + α3(IV)NC1 treated was 1.75 g/dL (± 0.28 g/dL, n = 6; Figure 5C). These results suggest that α3(IV)NC1 inhibits VEGF-mediated and bFGF-mediated neovascularization.

Regulation of tumor growth by α3(IV)NC1 in 129/Sv mice

Previously, several researchers reported that α3(IV)NC1 reduces the rate of tumor growth and angiogenesis in vivo. Here we
have examined the effect of COX-2 expression on tumor angiogenesis on α3(IV)NC1 treatment in tumor-bearing mice. Unlike earlier studies, in this study tumors were allowed to reach 150 mm³, and then α3(IV)NC1 was administered (30 μg/mouse) intravenously once per day. The control (untreated) mouse group demonstrated an increased rate of tumor growth, numbers of CD31-positive blood vessels, whereas the α3(IV)NC1-treated tumor mice demonstrated a regression of tumor growth and numbers of CD31-positive blood vessels (Figure 5D-H). Further circulating VEGFR2-positive ECs were also measured, and resulted in inhibition of circulating ECs on α3(IV)NC1 treatment (Figure 5G; α3(IV)NC1 treated). The possible integrin-mediated signaling regulated by α3(IV)NC1 in hypoxia-induced angiogenesis, affecting NFκB activation and downregulating COX-2 and VEGF/bFGF expressions are shown in the illustration (Figure 6).

Discussion

Collagen type IV α3 chain, noncollagenous domain (α3(IV)NC1), was identified as an endogenous potent inhibitor of angiogenesis and tumor growth. Later researchers identified other domains from type IV collagen noncollagenous such as α1, α2, α3, and α6 that were also inhibitors of tumor angiogenesis. Understanding the mechanisms of action of these molecules is crucial for their potential therapeutic use. We identified that α3(IV)NC1 binds
ing in hypoxic conditions leads to inhibition of COX-2/VEGF/bFGF expressions, of FAK. Inhibition of FAK activation leads to inhibition of FAK/phosphatidylinositol 3(IV)NC1 domain may also be mediated via integrin α3β1 integrin. To confirm the regulation of COX-2 expression on α3(IV)NC1 treatment, α3 integrin–null ECs were treated with α3(IV)NC1 protein under hypoxic conditions. COX-2 expression was not affected when α3(IV)NC1 was treated with α3 integrin–null ECs. This is consistent with earlier observations that α3(IV)NC1 binds to α3β1 and transdominantly inhibits αVβ3 integrin.25 These findings strongly suggest that α3(IV)NC1 can inhibit proinflammatory factor COX-2, and inhibit tumor vasculature, which leads to regression of tumor growth by binding to α3β1 integrin.

Here we showed regression of SCC-PSA1 tumors in 129/Sv mice on α3(IV)NC1 treatment. Regression was associated with reduced tumor vasculature, reduced COX-2 expression, and reduced circulating VEGFR2-positive ECs compared with control mice. We also observed inhibition of VEGF- and bFGF-stimulated matrigel angiogenesis and hemoglobin content on α3(IV)NC1 treatment in 129/Sv mice. These data provide further evidence that the tumor suppressive action of α3(IV)NC1 is also mediated through α3β1 integrin by regulating COX-2 expression. Recent studies have suggested that increases in the circulating VEGFR2-positive ECs correlate directly with increase in tumor angiogenesis and can serve as in vivo indicators of tumor angiogenesis.15

The antitumorogenic activity of α3(IV)NC1 under hypoxic conditions in solid tumors was not clearly understood. Our studies shed light on this mechanism by demonstrating that α3(IV)NC1 binds to α3β1 integrin, which inhibits COX-2 expression in vitro and in vivo. It is clear that inhibition of hypoxia-induced angiogenesis by α3(IV)NC1 is a complex process requiring further investigation. Based on our work here, there may be several targets for the dependent signaling mechanisms in ECs. The first was previously reported and involves EC-specific protein synthesis inhibition by α3(IV)NC1 binding to αVβ3 integrin.14,17 This mechanism has since been implicated to contribute to inhibition of tumor growth for several different tumor cell lines, including CT26 (colon adenocarcinoma), LLC (Lewis lung carcinoma), renal cell carcinoma (786-O), prostate carcinoma (PC3), human prostate cancer (DU145), human lung cancer (H1299), and human fibrosarcoma (HT1080), by inhibiting tumor angiogenesis.11,23,46 The findings reported here suggest that inhibition of tumor growth by α3(IV)NC1 may also be mediated by regulating hypoxic COX-2.

COX-2 is known to play a key role in the tumor angiogenesis.29,52 COX-2 upregulation is a hallmark of inflammation as well.53 Moreover, several investigators have demonstrated that blockade of the COX-2–mediated pathway provides therapeutic benefit in different cancer models.54 COX-2 regulates cellular responses to pathologic conditions, and studies have demonstrated that COX-2 is a potential target for tumor angiogenesis.55 COX-2–mediated signaling regulates expression of several inflammatory factors in hypoxic cells and enhances angiogenesis in solid tumors.55 In the present study, we have demonstrated for the first time that α3(IV)NC1 inhibits hypoxia-induced COX-2 expression in ECs via FAK/Akt/NFκB pathway, which in turn leads to decreased tumor angiogenesis and tumor growth. In addition to COX-2 inhibition, VEGF and bFGF protein expression were also inhibited on α3(IV)NC1 treatment in ECs.

Our results suggest that when ECs are treated with α3(IV)NC1, it binds to α3β1 integrin and inhibits NFκB signaling, resulting in inhibition of COX-2–mediated signaling. This was further supported by our observation that α3(IV)NC1 inhibits COX-2 expression in β3 integrin-deficient ECs, demonstrating that COX-2–mediated signaling is regulated through α3β1, and not by αVβ3 integrin. To confirm the regulation of α3β1 integrin-dependent COX-2 expression on α3(IV)NC1 treatment, α3 integrin–null ECs were treated with α3(IV)NC1 protein under hypoxic conditions. COX-2 expression was not affected when α3(IV)NC1 was treated with α3 integrin–null ECs. This is consistent with earlier observations that α3(IV)NC1 binds to α3β1 and transdominantly inhibits αVβ3 integrin.25 These findings strongly suggest that α3(IV)NC1 can inhibit proinflammatory factor COX-2, and inhibit tumor vasculature, which leads to regression of tumor growth by binding to α3β1 integrin.
inhibitory effects of α3(IV)NC1 on tumor angiogenesis, including or in addition to COX-2, VEGF, and bFGF.

In summary, the in vitro and in vivo observations support αVβ3 and α3β1 integrins role in angiogenic activity of α3(IV)NC1. While both of these integrins mediate tube formation by cultured ECs, α3β1 integrin-mediated signaling influences downstream effects on COX-2 expression, which appears central to the mechanism of α3(IV)NC1 antitumor activities. The study also demonstrates that α3(IV)NC1 inhibits hypoxia-induced angiogenesis by inhibiting NFκB activation, leading to inhibition of COX-2 expression, which in turn results in downregulation of hypoxia-induced VEGF/bFGF expression. Our findings have potential implications of α3(IV)NC1 for treatment of solid tumor growth, which depend critically on hypoxic angiogenesis. The decrease in COX-2 expression under hypoxia that results in decreased VEGF/bFGF expression probably represents a primary molecular mechanism by which α3(IV)NC1 inhibits the pathologic angiogenesis essential to the growth of tumors.

Acknowledgments

The authors thank Richard O. Hynes, Massachusetts Institute of Technology, Cambridge, MA, for providing β3 integrin-null mouse lung ECs.

References

Authorship

Contribution: C.S.B. and A.P.M. designed and performed all the studies. D.C. contributed vital reagents and tools. R.S. and K.M.H.D. generated α3 integrin-null immortalized ECs. V.G.K. performed design and analysis of signaling experiments. A.S. was responsible for conception, design, execution, and analysis of the studies and wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Dr Sudhakar Akulapalli, Assistant Professor and Staff Scientist II, Cell Signaling and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, 555, North 30th Street, Omaha, NE 68131; e-mail: akulapalli@boystown.org.

This work was supported by Flight Attendant Medical Research Institute Young Clinical Scientist Award grant (FAMRI #062558 to S.A.), Dobleman Head and Neck Cancer Institute grant, travel grant from Mahindra and Mahindra Foundation, research funds of Cell Signaling and Tumor Angiogenesis Laboratory (to S.A.), and the laboratory of D.C. is supported by National Institutes of Health grant RO1 DK55000.

Regulation of COX-2–mediated signaling by α3 type IV noncollagenous domain in tumor angiogenesis

Chandra Shekhar Boosani, Arjuna P. Mannam, Dominic Cosgrove, Rita Silva, Kairbaan M. Hodivala-Dilke, Venkateshwar G. Keshamouni and Akulapalli Sudhakar