To the editor:

Donor CTLA-4 +49 A/G*GG genotype is associated with chronic GVHD after HLA-identical haematopoietic stem-cell transplantations

The CTLA-4 gene encodes a molecule providing a negative signal for T-cell activation. CTLA-4 +49 A/G and CT60 polymorphisms have been associated with auto-immune diseases (AID). A recent study suggested that donor genotype AA of CT60 was associated with better survival, increased rate of acute graft-versus-host disease (GVHD) and lower relapse incidence. We evaluated the impact of +49 A/G and CT60 polymorphisms in 225 patients who received, after a myeloablative conditioning regimen, a non-T-depleted hematopoietic stem-cell transplant (HSCT) from a human leukocyte antigen (HLA)-identical sibling donor for malignant diseases. The donors were genotyped for +49 A/G and CT60 using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) techniques. The patient, donor, and transplant characteristics were not statistically different with respect to +49 A/G and CT60 polymorphisms. The end points were acute GVHD, chronic GVHD (cGVHD), relapse, survival, and bacterial, fungal, and cytomegalovirus (CMV) infections.

We did not find any association of donor +49 A/G or CT60 polymorphisms nor of +49 A/G CT60 genotypes with acute GVHD, relapse, survival, or infections. However, patients who received a graft from a donor with a GG genotype for +49 A/G had a stronger risk of developing cGVHD compared with those having a donor with either AG or AA genotype (73% vs 55% or 48%, respectively, \(P = .04 \)). CT60 polymorphism did not have any impact on the risk of cGVHD, relapse, survival, or infections. Therefore, the +49 A/G and CT60 polymorphisms did not have a significant impact on acute or chronic GVHD.

We also evaluated the impact of +49 A/G and CT60 genotypes with acute GVHD, relapse, survival, or infections. We found that patients with +49 A/G and CT60 genotypes had a higher risk of developing cGVHD compared with those having a donor with either AG or AA genotype (73% vs 55% or 48%, respectively, \(P = .04 \)). However, the same tendency without statistical significance was observed for CT60*GG genotype (62% vs 54% or 40%, respectively, \(P = .06 \)). In fact, CT60*GG and +49 A/G*AA or AG had the same risk of cGVHD as CT60*AA and +49 A/G*AA or AG genotypes (56% and 50%, respectively) and a statistically significant lower risk than the CT60*GG and +49 A/G*GG genotype (73%, \(P = .04 \)). CT60 polymorphism did not have any impact on the risk of cGVHD, relapse, survival, or infections. Therefore, the +49 A/G and CT60 polymorphisms did not have a significant impact on acute or chronic GVHD.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Matthew Collin, Haematological Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; e-mail: matthew.collin@ncl.ac.uk.

References

www.bloodjournal.orgFrom www.bloodjournal.org by guest on July 14, 2017. For personal use only.
appear to be an independent risk factor of cGVHD. This is due to the linkage disequilibrium between +49A/G*G and CT60*G polymorphisms. In Cox multivariate analysis (backward stepwise, logistic regression), when studying +49A/G polymorphisms, age of the patients, ABO incompatibilities, stage of disease, source of stem cells, and sex matching, as potent pregraft risk factors for cGVHD, 3 factors appeared to be independent risk factors of cGVHD: +49A/G (P = .03, hazard ratio [HR] = 1.76, 95% confidence interval [CI] 1.01-2.95), age of the patient (P = .01, HR = 2.28, 95% CI 1.21-4.27), and ABO incompatibility (P = .03, HR = 1.55, 95% CI 1.04-2.31).

While this study did not confirm the association of donor CT60 polymorphism with acute GVHD, relapse, and survival as suggested by Perez-Garcia,3 it showed a significant association of donor +49A/G*GG genotype with cGVHD. In vitro studies have shown that the +49A/G* GG genotype correlated with an increased T-cell proliferation after stimulation4 and decreased expression of CTLA-4.5 This effect was seen in CD4+ and not in CD8+ T lymphocytes.6 In vitro studies as well as the association with autoimmune disease (AID) support the fact that the +49A/G*GG genotype is associated with an increased CD4+ cell response to stimulation. As CD4+T cells play an important role in the occurrence of cGVHD, their increased activation in association with +49A/G*GG genotype could explain the observed association of +49A/G*GG genotype with cGVHD. These results illustrate the increasing role of non–HLA genetics in developing an HSCT risk index for use in the clinic.7

Mariam Azarian, Marc Busson, Virginia Lepage, Dominique Charron, Antoine Toubert, Pascale Loiseau, Regis Peffault de Latour, Vanderson Rocha, and Gerard Socié

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Pascale Loiseau, Hôpital Saint-Louis, Laboratoire d’Immunologie et d’Histocompatibilite, 1 Avenue Claude Vellefaux, 75010 Paris, France; e-mail: pascale.loiseau@univ-paris-diderot.fr.

References

Donor CTLA-4 +49 A/G*GG genotype is associated with chronic GVHD after HLA-identical haematopoietic stem-cell transplantations

Mariam Azarian, Marc Busson, Virginia Lepage, Dominique Charron, Antoine Toubert, Pascale Loiseau, Regis Peffault de Latour, Vanderson Rocha and Gerard Socié