betta and tumor necrosis factor-alpha in human U937 monocyctic cells. Evidence for additional regulatory steps in kappaB-dependent transcrip-
49. Campbell KJ, Rocha S, Perkins ND. Active re-
pression of antiapoptotic gene expression by Re-
50. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-
TRAF2 and TRADD-FADD interactions define
two distinct TNF receptor 1 signal transduction
51. Simeonidis S, Staubier D, Chen G, Hendrickson
WA, Thanos D. Mechanisms by which IkappaB
proteins control NF-kappaB activity. Proc Natl
52. Sakurai H, Miyoshi H, Toriumi W, Sugita T. Func-
tional interactions of transforming growth factor
beta-activated kinase 1 with IkappaB kinases to
1999;274:10641-10648.
agents. 228. five new agarofurans, Reissantins
A-E, and cytotoxic principles from
Reissantia
54. Lee FS, Peters RT, Dang LC, Maniatis T. MEKK1
activates both IkappaB kinase alpha and IkappaB
kinase beta. Proc Natl Acad Sci U S A. 1998;
95:6391-6396.
55. Yang J, Lin Y, Guo Z, et al. The essential role of
MEKK3 in TNF-induced NF-kappaB activation.
56. Lallena MJ, Diaz-Meco MT, Bren G, Paya CV,
Zhong H, Voll RE, Ghosh S. Phosphorylation of
IkappaB B p65 by PKA stimulates transcrip-
tional activity by promoting a novel bivalent inter-
action with the coactivator CBP/p300. Mol Cell.
57. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O,
Woodgett JR. Requirement for tyrosine syn-
thase kinase-2betta in cell survival and NF-
58. Tanaka H, Fujita N, Tsurow T. 3-Phosphoinositide-
dependent protein kinase-1-mediated IkappaB
kinase beta (IkkB) phosphorylation activates NF-
kappaB signaling. J Biol Chem. 2002;278:40965-
40973.
59. Gustin JA, Maehama T, Dixon JE, Donner DB.
The PTEN tumor suppressor protein inhibits tu-
morecrosis factor-induced nuclear factor kappa
60. Takaeu G, Surabhi RM, Park JK, Ninomiya-Tsuji
J, Matsumoto K, Gaynor RB. TAK1 is critical for
IkappaB kinase-mediated activation of the NF-
61. Kammanadimitri SJ, Chadee K. Suppression of
IkappaB kinase B activation by Entameba histolytica
in intestinal epithelial cells is mediated by heat
 polysaccharide-induced NF-kappaB activation by
interacting with TRAF6 and inhibiting its ubiquiti-
63. Wang X, Khaleque MA, Zhao MJ, Zhong R,
Gaestel M, Cauldwood SK. Phosphorylation of
the PTEN tumor suppressor protein inhibits tu-
mor necrosis factor-induced nuclear factor kappa
40973.
64. Morimoto RI, Santoro MG. Stress-inducible re-
ponses and heat shock proteins: new pharma-

Erratum

In the article by Joiner et al entitled “Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes,” which appeared in the February 15, 2007, issue of Blood (Volume 109:1728-1735), Figure 3 was missing panels C and D. The complete figure appears below; the figure legend was complete as published.

![Figure 3](https://example.com/figure3.png)

Figure 3

(A) Urea + Sulfamate +/− Urea
(B) Urea + Sulfamate +/− Urea
(C) Urea + Sulfamate +/− Urea
(D) Urea + Sulfamate +/− Urea
(E) Urea + Sulfamate +/− Urea
(F) Urea + Sulfamate +/− Urea

For personal use only. on October 28, 2017. by guest

From www.bloodjournal.org by guest on October 28, 2017. For personal use only.
Erratum in Joiner et al. Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes.

Updated information and services can be found at:
http://www.bloodjournal.org/content/109/7/2735.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml