Brief report

VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors

Suryasarathi Dasgupta,1,2 Yohann Repessé,1,3 Jagadeesh Bayry,1,2 Ana-Maria Navarrete,1,2 Bharath Wootla,1,2 Sandrine Delignat,1,2 Theano Irinopoulou,2,4 Caroline Kamaté,5 Jean-Marie Saint-Remy,6 Marc Jacquemin,6 Peter J. Lenting,5 Annie Borel-Derlon,3 Srinivas V. Kaveri,1,2 and Sébastien Lacroix-Desmazes1,2

1Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 681, Paris, France; 2Université Pierre et Marie Curie—Paris 6, Institut des Cordeliers, Institut Fédératif de Recherche (IFR) 58, and Institut du Fer a Moulin, IFR 83, Paris, France; 3Université de Caen, Laboratoire d'hémato logie Equipe d'Accueil (EA) 3212, Caen, France; 4INSERM, US36, U706, Paris, France; 5Laboratory for Thrombosis and Haemostasis, Department of Hematology, University Medical Center, Utrecht, The Netherlands; 6Center for Molecular and Vascular Biology, University of Leuven, Belgium

Introduction

A role for von Willebrand factor (VWF) as a chaperone molecule for procoagulant factor VIII (FVIII) has been extensively documented.1-4 Under physiologic conditions, VWF binds to FVIII after its release in the circulation. VWF protects FVIII from proteolysis by lipid-bound proteases, stabilizes the FVIII heterodimeric structure, modulates its activity by thrombin, and further regulates its elimination by lipoprotein-related receptors.5,6

Patients with severe hemophilia A lack functional endogenous FVIII. In up to 30% of the patients, injection of exogenous FVIII to treat hemorrhages results in the development of anti-FVIII antibodies that inhibit the therapeutically administered FVIII. In vivo experimental evidence and clinical observations suggest that the presence of VWF in FVIII preparations is associated with reduced FVIII immunogenicity.7,8 Cellular and molecular mechanisms underlying a putative protective effect of VWF remain, however, unclear.

The induction of a primary anti-FVIII immune response requires the administered FVIII to be endocytosed by professional antigen-presenting cells (APCs) and to be presented to FVIII-specific naive CD4+ T cells. The immunoprotective effect of VWF requires a physical interaction with FVIII because the endocytosis of FVIII was significantly restored on hindering the formation of the VWF-FVIII complex. Interestingly, VWF had no direct inhibitory effect either on the ability of DCs to present antigenic peptides or on the activation potency of CD4+ T cells. We thus propose that VWF may reduce the immunogenicity of FVIII by preventing, upstream from the activation of immune effectors, the entry of FVIII in professional antigen-presenting cells. (Blood. 2007;109:610-612)

Materials and methods

DCs were generated from circulating monocytes of healthy blood donors on 5-day culture in X-VIVO15-1% AB serum or in RPMI-10% FCS, supplemented with rhGM-CSF (1000 UI/10⁶ cells; Immunotools, Friesoythe, Germany) and rhIL-4 (500 UI/10⁶ cells; R&D Systems, Lille, France). Surface phenotypic expression confirmed their immature status (data not shown).

DCs generated in X-VIVO15-1% AB serum were incubated with FVIII-FITC (molar ratio, 1:25) alone or in the presence of VWF (Wilfactin) or human serum albumin (HSA). Conjugation of FVIII with FITC did not alter its specific activity (data not shown) and with VWF (Figures S1 and S4, available on the Blood website; see the Supplemental Figures link at the top of the online article).

DCs from donors with the DRB1*1501/DRB5*01 haplotype, generated in RPMI-10% FCS, were used for T-lymphocyte activation studies. The synthetic FVIII-derived T1244-T1261 peptide (NeoMPS, Strasbourg, France) and human recombinant factor IX (Benefix) were used as controls.

For confocal microscopy studies, DCs were fixed with 100% ethanol and mounted on glass slides. Images were acquired using a Leica SP2 confocal microscope (Leica, Mannheim, Germany) coupled to a Leica DMIRE2 inverted microscope (Wetzlar, Germany). The detection wavelength range was 500 to 580 nm for FITC.

Results and discussion

We first analyzed the kinetics of internalization of FITC-labeled FVIII by DCs. Incubation of DCs with FVIII-FITC resulted in a dose-dependent labeling of the cells and internalization of FVIII as shown by confocal microscopy (Figure 1A-B). Preincubation of the DCs with 5 mM EDTA significantly reduced the uptake of FVIII (data not shown), demonstrating the involvement of bivalent ion-dependent endocytic receptors in FVIII internalization. The hallmark of DCs is their ability to trigger the activation and
proliferation of T cells in an antigen-specific manner.9,10 We confirmed that internalization of FVIII by DCs led to presentation of FVIII-derived peptides and activation of the anti-FVIII C1 domain-specific human CD4+ T-cell clone, D9E9,11 in a dose-dependent manner (Figure 1C). Activation of D9E9 was detected for FVIII concentrations close to that reached in patients with hemophilia A on administration of therapeutic FVIII (ie, 26 ± 8 and 711 ± 63 pg/mL IFN-γ at 1 and 7 nM, respectively; mean ± SD). D9E9 was not activated when it was incubated with DCs in medium alone or with an irrelevant antigen (Figure 1D). D9E9 was, however, strongly activated by DCs incubated in the presence of its target FVIII-derived synthetic peptide I2144-T2161.11

Preincubation of FVIII-FITC (107 nM) with VWF at 1- to 130-fold molar excess, prior to incubation with DCs, resulted in a dose-dependent inhibition of FVIII endocytosis (12% ± 2% to 94% ± 18%; Figure 2A). Incubation of FVIII in the presence of a 25-fold molar excess of VWF yielded a significant reduction of FVIII uptake (ie, 58% ± 4%; P < .01), as compared to incubation of FVIII alone. Blocking DC-mediated endocytosis by VWF resulted in a dose-dependent reduction of the activation of D9E9 (up to 75%, Figure 2B). Interestingly, D9E9 activation by DCs loaded with the I2144-T2161 peptide was not altered in the presence of concentrations of VWF similar to those used in the presence of FVIII, thus indicating that VWF does not have a direct inhibitory effect on T-cell activation.

We then explored the molecular mechanisms underlying the reduced endocytosis of FVIII by VWF. We first tested the specificity of the protective effect of VWF on endocytosis of FVIII by DCs: (1) when used at concentrations equimolar to that of VWF, HSA (which is used as a stabilizing agent in the excipient of different therapeutic proteins, including FVIII) did not inhibit FVIII endocytosis (Figure 2A); (2) endocytosis of α2M-FITC (Biomac, Leipzig, Germany) by DCs was not inhibited by a 25-fold molar excess of VWF, which was incubated for 2 hours at 37°C. Ligand-FITC+ cells (ie, FVIII-FITC or α2M-FITC) were analyzed as described. Average of the results obtained with cells from 2 different donors. (D) Requirement of FVIII-VWF binding for inhibition of FVIII endocytosis. FVIII (5 nM) was incubated with DCs (10 000 cells/well) and D9E9 (5000 cells/well) in medium alone or in the presence of full-length recombinant VWF (recVWF) or D3 deleted recombinant VWF (ΔD3 recVWF), for 20 hours at 37°C. Activation of D9E9 was assessed by measuring the released IFN-γ by ELISA. Data are from 1 representative experiment. (C) Specificity of the protective effect of VWF on FVIII endocytosis by DCs. FVIII-FITC (107 nM) and α2M-FITC (27.8 nM), preincubated alone or with a 25-fold molar excess of VWF, were incubated with DCs for 2 hours at 37°C. Steady-state levels of FVIII-FITC were measured by measuring the released IFN-γ by ELISA. Statistical significance was assessed using the ANOVA Fisher PLSD test. Error bars indicate SD.

Figure 1. Endocytosis of FVIII by human DCs and presentation to FVIII-specific T cells. (A) Dose-dependent labeling of DCs following incubation with FVIII-FITC. Five-day-old monocyte-derived human DCs were incubated in X-VIVO15 medium containing 0 to 357 nM FVIII-FITC for 2 hours at 37°C. Following incubation, cells were washed extensively and fluorescent cells were analyzed by flow cytometry. Representative of more than 2 experiments. (B) Intracellular localization of FITC-FVIII. DCs were incubated with FVIII-FITC for 2 hours at 37°C. Following incubation, cells were washed extensively and fluorescent cells were analyzed by flow cytometry. Representative of more than 2 experiments. (C) Activation of the FVIII-specific CD4+ T-cell clone D9E9 by FVIII-loaded DCs. DCs were generated from blood donors with matched MHC haplotypes (thanks to J. Treton, Institut National de la Santé et de la Recherche Médicale [INSERM] Unité [U] 662, Paris, France) and were incubated at 10 000 cells/well with D9E9 (5000 cells/well) in DMEM-10% FCS-20 IU/mL rhIL-2, alone or in the presence of 0 to 36 nM FVIII for 20 hours at 37°C. Activation of D9E9 was assessed by measuring released IFN-γ by enzyme-linked immunosorbent assay (ELISA). Data are representative of 3 independent experiments. (D) DCs (10 000 cells/well) were cultured with D9E9 (5000 cells/well) alone or in the presence of 20 nM FVIII, human recombinant factor IX (FIX, 36 nM) or a synthetic FVIII peptide I2144-T2161 known to activate D9E9 (2 μg/mL) for 20 hours at 37°C. Data represent the average of 7 independent experiments. Error bars indicate SD.
LRP/CD91 and other members of the LDL receptor (LDLR) family have been implicated in FVIII uptake by scavenger cells. LRP is expressed by DCs. Interestingly, VWF has been shown to block the interaction of FVIII with receptors of the LDLR family. However, our recent findings show that LDLR family members are not implicated in FVIII endocytosis by DCs (S. Dasgupta, J.B., S.V.K., and S.L.-D., unpublished data, September 2006) and suggests that FVIII endocytosis by DCs involves yet unidentified alternative bivalent ion-dependent receptors. Whether VWF can prevent the interaction of FVIII with the latter receptors will have to be established.

Our data highlight the role of VWF as an immunoprotective chaperone for FVIII, that is, by preventing, upstream from the activation of immune effectors, the entry of FVIII in professional APCs. Further, we demonstrate in vitro that increasing the VWF/FVIII ratio reduces FVIII endocytosis by DCs in a dose-dependent manner. It remains, however, to be demonstrated whether VWF exerts similar effects in vivo.

Interestingly, coadministration with FVIII of exogenous VWF was suggested to reduce FVIII immunogenicity in vivo. In normal plasma, the FVIII/VWF molar ratio is 1:50. It ranges from 1:9 to 1:174 in the different plasma-derived FVIII preparations (manufacturers’ communications, June-July 2006), yielding expected molar ratios of 1:64 to 1:229 following intravenous administration to the patients. It would be of interest to investigate whether higher amounts of VWF in therapeutic preparations are associated with lesser incidence of FVIII inhibitors. If confirmed, increasing VWF amounts in FVIII preparations above physiologic levels within limits that are compatible with normal hemostasis may be beneficial to the patients by inhibiting the initiation of immune responses to FVIII. Alternatively, reducing the risk for development of FVIII inhibitors may be achieved using minimal VWF-derived peptidic constructs endowed with similar protective abilities, while being devoid of prothrombotic effects.

Acknowledgments

We wish to thank Joelle Treton (INSERM U662, Hospital Saint-Louis, Paris), Renaud Lavend’homme (Center for Molecular and Vascular Biology, Katholische Universitat Leuven, Belgium), and Dr Jean-Pierre Girma (INSERM U770, Bicêtre, France) for providing us with blood from MHC-matched donors, with the D9E9 CD4 T-cell clone, and with the anti-VWF IgG Fab 418. We are indebted to Dr Olivier Christophe (INSERM U770) and Dr Yves Laurian (Laboratoire d’Hématologie, Hôpital Jean Verdier, Bondy, France) for invaluable discussions. VWF (Wilfactin) and HSA were kind gifts from Laboratoire François du Fracentionnement et des Biotechnologies (Les Ulis, France). FIX (Benefix) and FVIII (Helixate NexGen) were kind gifts from Baxter (Maurepas, France) and ZLB-Behring, respectively.

This work was supported by INSERM, by the Centre National de la Recherche Scientifique, by the Université Pierre et Marie Curie, by grants from Indo-French Center for Promotion of Advanced Research (CEFIPRA), from Agence Nationale de la Recherche (ANR-05-MRAR-030), and from ZLB-Behring (Paris, France). P.J.L. is a recipient of a grant from Biotec (Dreieich, Germany). S. Dasgupta, B.W., J.B., and Y.R. are recipients of fellowships from CEFIPRA, LFB, Les Entreprises du Médicament (LEEM; Paris, France), and ZLB-Behring, respectively.

Authorship

Conflict-of-interest disclosure: The authors declare no competing financial interests.

S. Dasgupta and Y.R. have contributed equally to the work.

Correspondence: Sébastien Lacroix-Demazes, INSERM UMR 681, Institut des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France; e-mail: sebastien.lacroix-demazes@umrs681.jussieu.fr.

References

VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors

Suryasarthi Dasgupta, Yohann Repessé, Jagadeesh Bayry, Ana-Maria Navarrete, Bharath Wootla, Sandrine Delignat, Theano Irinopoulou, Caroline Kamaté, Jean-Marie Saint-Remy, Marc Jacquemin, Peter J. Lenting, Annie Borel-Derlon, Srinivas V. Kaveri and Sébastien Lacroix-Desmazes

Updated information and services can be found at:
http://www.bloodjournal.org/content/109/2/610.full.html

Articles on similar topics can be found in the following Blood collections
 Brief Reports (1931 articles)
 Hemostasis, Thrombosis, and Vascular Biology (2485 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml