To the editor:

Low-dose versus high-dose therapy for Gaucher disease: goals and markers

Zimran et al state in their commentary1 that the title of our study2 is misleading because the superior effect of a high dose of imiglucerase compared with a low dose is “limited to the response of 2 surrogate markers, serum chitotriosidase and MRI scanning of the marrow.”1(p802) We agree that no superiority of the higher dose was established with respect to the most widely used parameters of disease (ie, cytopenia and organ volumes), although subtle differences may not have become apparent due to the limited number of matched pairs for each parameter. In fact, we have shown in the past that one ninth of the originally established dose leads to sustainable improvements in a subset of adults.3 The question arises: how do we best evaluate the efficacy of enzyme replacement therapy in Gaucher disease by optimally exploiting available biomarkers? By definition, biomarkers are either clinical markers or mechanism-based biochemical markers that correlate with observed outcomes. The biomarkers could be used in clinical studies as proof of concepts or clinical end points.4 For example, in diabetes, glycosylated hemoglobin can serve as a biochemical marker and measures of nephropathy as a clinical marker, which should be evaluated against clinical end points, such as life or death, cure or failure, or time to an event. Of interest, for Gaucher disease, these clinical end points are not at all clearly defined: the overall goals of treatment are still the subject of debate.5 Obvious goals are to achieve normal growth and development in children, normal blood counts, absence of symptomatic organomegaly, and absence of new skeletal events. Ultimately, complications such as fibrosis of the liver and the occurrence of malignancies should be prevented. How do these goals relate to the existing biomarkers? Earlier meta-analyses have focused on liver size as a clinical marker;6 however, its relation with these outcome measures was never thoroughly validated. The absence of a “gold standard” for disease severity in Gaucher patients hampers the validation of any marker, whether liver size or chitotriosidase. At least for chitotriosidase, there is novel evidence for dose dependence for the marker;6 however, its correlation with predefined goals of therapy will stimulate a critical evaluation of clinical and biochemical markers against predefined goals of therapy.

Carla E. M. Hollak, Maaikje de Fost, Johannes M. F. G. Aerts, and Stephan vom Dahl

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Carla E. M. Hollak, Department of Endocrinology and Metabolism, Academic Medical Center, P. O. Box 22860, F4-279, Amsterdam 1100 DD, The Netherlands; c.e.hollak@amc.uva.nl.

References


Response:

Correlation between Gaucher disease clinical severity and surrogate markers is weak

We are in agreement that the role of surrogate markers in the treatment of Gaucher disease requires further critical examination. We also agree with Hollak et al that there are several aspects of serum chitotriosidase levels that make this parameter a promising surrogate for disease severity. The high levels found in Gaucher disease and the fact that Gaucher cells secrete the enzyme make...
Neonates achieved platelet counts higher than 40,000/μL with compatible platelets, and donor platelet transfusions. They found that 24 of these neonates with anti–HPA-1a–mediated NAIT treated with random donor platelets were available for immediate treatment of neonates with a severe index case of NAIT. The National Blood Service in England provides HPA-1a/5b–negative platelets as the treatment of choice for NAIT.

To the editor:

Platelet transfusion in neonatal alloimmune thrombocytopenia

We read with interest the article “Antigen-positive platelet transfusion in neonatal alloimmune thrombocytopenia (NAIT)” by Kiefel et al. The authors describe the outcome of 27 neonates with anti–HPA-1a–mediated NAIT treated with random donor platelet transfusions. They found that 24 of these neonates achieved platelet counts higher than 40 × 10^9/L and concluded that random donor platelet transfusion is an acceptable strategy for the management of severe index cases of NAIT before compatible platelets are available.

While we agree with this conclusion, we wish to stress that antigen-negative platelets are the treatment of choice for NAIT. The National Blood Service in England provides HPA-1a/5b–negative platelets for immediate treatment of neonates with a presumptive diagnosis of NAIT. We have compared the platelet counts and clinical outcome in neonates with anti–HPA-1a– and anti–HPA-5b–mediated NAIT transfused with HPA-1a/5b–negative platelets (ie, antigen-compatible transfusion [AC-Tx]) versus random donor platelet transfusion (R-Tx). In many cases of NAIT, a spontaneous recovery in platelet count is seen, and some are apparent in the study of Kiefel et al (eg, cases 1, 4, and 9). In such cases, it is difficult to be sure of the contribution of the transfused platelets to the increase in platelet count; we have therefore excluded such cases from our calculations (Figure 1; Table 1).

Figure 1. Mean platelet increments in neonates with NAIT following HPA-1a/5b–negative platelet transfusions or random donor platelet transfusions. The mean platelet increments in neonates with anti–HPA-1a– and/or anti–HPA-5b–mediated NAIT following HPA-1a/5b–negative platelet transfusions (n = 29) (open circles) or random donor platelet transfusions (n = 9) (closed squares) are shown. The error bars represent the standard deviation of the measurements. The dotted curves represent the fitted exponential decay curves to the data. The individual patient data are given in Figure 2.
Response: Correlation between Gaucher disease clinical severity and surrogate markers is weak

Ari Zimran, Deborah Elstein and Ernest Beutler

Updated information and services can be found at: http://www.bloodjournal.org/content/109/1/387.2.full.html
Articles on similar topics can be found in the following Blood collections:

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml