To the editor:

Does liver biopsy overestimate liver iron concentration?

Cappellini and colleagues claim that the use of a superconducting quantum interference device (SQUID) biosusceptometer underestimates liver iron concentration (LIC) in their phase 3 study of deferiprox (DFX). LIC was measured either in deparaffinized liver samples excised by various biopsy techniques (Menghini with saline flushing, cutting needles) or in an anterior position above the right liver lobe by biomagnetic liver susceptometry (BLS) using low Tc-SQUID biosusceptometers. In vivo wet-weight LICs measured by BLS were converted by a factor of 3.33 into dry-weight values. This approximate conversion factor has been critically adopted throughout the literature, even by ourselves, although there were strong data available supporting a higher factor for the ratio of wet to dry weight and a significant difference between LIC from fresh tissue and from deparaffinized samples. Thus, the conversion factor between LIC as determined by BLS and from deparaffinized liver samples would have been at least 5.5. However, even though H33342 staining does involve a great deal of viability loss in nonhematopoietic tissues, as pointed out, it does not seem to cause any functional impairment within the primitive hematopoietic compartments. Therefore, we consider that our results do represent an inherent difference in the self-renewal capacity of cells within the SP subset that is directly correlated with their ability to efflux dye.

Fernando D. Camargo and Margaret A. Goodell

Correspondence: Fernando D. Camargo, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; e-mail: camargo@wi.mit.edu.

References


Roland Fischer, Paul Harmatz, and Peter Nielsen

Correspondence: Roland Fischer, UKE–Institut für Biochemie und Molekularbiologie II, Martinistr 52, D-20246, Hamburg, Germany; e-mail: fischer@uke-unihamburg.de.

References


Response:

Deferasirox (ICL670) effectively reduces liver iron concentration, whether assessed by biopsy or SQUID

We thank Drs Fischer, Harmatz, and Nielsen for their letter and interest in our paper. In this study, liver iron concentration (LIC) was assessed either by biopsy (84% of patients) or superconducting quantum interference device (SQUID; 16%; primarily children and adults with contraindications to biopsy). SQUID assessments were performed at 3 centers (in Italy, Germany, and the US); baseline and end-of-study assessments were always conducted at the same site.

We acknowledge that the discrepancy between LIC values obtained from biopsy and SQUID was primarily due to the accepted conversion factor of 3.33 that was used to convert wet-weight into dry-weight values. As discussed in the paper, we opted to present prenormalized LIC values because the discrepancy between values obtained from biopsy and SQUID was only identified late in the trial via a validation study. By this time, most patients had been assigned doses according to baseline LIC and most had completed a large proportion of the study. Subsequently, the more appropriate correction factor noted by Drs Fischer, Harmatz, and Nielsen (5.83 ± 0.60) was determined through an independent study.

The effect of deferasirox for reducing iron burden, as measured by LIC, was potentially underreported in our paper because we elected to use prenormalized SQUID data. Although these values are different in absolute magnitude from the prenormalized values, they do not differ in the relative magnitude of response. The inclusion or exclusion of patients whose LIC was assessed by SQUID does not alter the primary outcome of the study, which was to demonstrate that deferasirox is generally well tolerated and effective for reducing body iron burden.

Despite the technical limitations of the application in this study, SQUID has made, and is continuing to make, important contributions to the field of iron chelation research. As with all methods that are used in longitudinal assessments, consistency of technique is of utmost importance. For the patients who have access, SQUID will remain an important tool to monitor iron overload and response to chelation therapy.

Maria Domenica Cappellini

Correspondence: Maria Domenica Cappellini, Università di Milano, Fondazione Ospedale Maggiore Policlinico, Mangiagalli, Regina Elena IRCCS, Milan, Italy; e-mail: maria.cappellini@unimi.it.

References


To the editor:

Circulating CD34+ cells, pulmonary hypertension, and myelofibrosis

We read with great interest the paper of Popat and colleagues, who, examining an impressive case series of patients with myelofibrosis (MF) associated with myeloproliferative disorders (MPDs), showed that these patients have higher levels of peripheral blood CD34+ cells than patients with MF secondary to severe pulmonary hypertension (PH). On the basis of their data, the authors suggest that the increased levels of circulating CD34+ cells that are observed in patients with a stem cell defect are not due to displacement from the marrow microenvironment, because the phenomenon cannot be observed when MF of equivalent severity is secondary to another condition, such as PH.

However, we should like to comment on the authors’ results by offering some additional interpretations on the mechanisms that contribute to the phenomenon they have described. It is well known that PH either primary or secondary to parenchymal or connective tissue diseases is strongly characterized by altered vascular biology and endothelial dysfunction. Another emerging concept is that circulating CD34+ progenitors include subsets of endothelial-committed cells involved in endothelial homeostasis and vascular repair.

We have recently evaluated the presence of circulating CD34+ cells in patients with PH secondary to diffuse lung diseases. Our data indicate that severe lung diseases, which are associated to secondary PH, including idiopathic pulmonary fibrosis and lung fibrosis associated with connective tissue disorders, are characterized by reduced levels of circulating CD34+ cells (Figure 1). Moreover, a number of data indicate that alterations of the pulmonary vasculature may depend upon reduced or defective marrow-derived progenitor cells. Therefore, when MF develops in patients with PH, it may be suggested that the increase in peripheral CD34+ cells is masked by the reduced CD34+ cell count that is observed at basal conditions in these subjects. This may explain why the authors found no difference in CD34+ cells between patients with PH-induced MF and control subjects. If this was the case, we suggest that reduction of peripheral CD34+ cells could reflect homing of progenitor cells to the lungs, where they may contribute to the vascular lesions. An easy approach to confirm this hypothesis could be to evaluate the presence and/or localization of CD34+ cells in lung biopsy samples obtained from patients with MF secondary to severe PH.

An additional, though not necessarily alternative hypothesis, is that PH is associated with certain degrees of marrow fibrosis, which in turn reduces the ability of bone marrow to provide...
Does liver biopsy overestimate liver iron concentration?

Roland Fischer, Paul Harmatz and Peter Nielsen