Hepcidin is decreased in TFR2 hemochromatosis

Elizabeta Nemeth, Antonella Roetto, Giovanni Garozzo, Tomas Ganz, and Clara Camaschella

Introduction

The hepatic peptide hepcidin is the key regulator of iron metabolism in mammals. Recent evidence indicates that certain forms of hereditary hemochromatosis are caused by hepcidin deficiency. Juvenile hemochromatosis is associated with hepcidin or hemojuvelin mutations, and these patients have low or absent urinary hepcidin. Patients with C282Y HFE hemochromatosis also have inappropriately low hepcidin levels for the degree of iron loading. The relationship between the hemochromatosis due to transferrin receptor 2 (TFR2) mutations and hepcidin was unknown. We measured urinary hepcidin levels in 10 patients homozygous for TFR2 mutations, all with increased transferrin saturation. Urinary hepcidin was low or undetectable in 8 of 10 cases irrespective of the previous phlebotomy treatments. Our data indicate that TFR2 is a modulator of hepcidin production in response to iron.

Patients, materials, and methods

Clinical data and molecular defects of the patients studied have been previously reported. Controls were healthy adult subjects from the laboratory staff and their children. Informed consent was obtained from all subjects involved in the study or from parents in case of children, according to the guidelines of the different institutions. The study was approved by the Institutional Review Board of the Department of Clinical and Biological Sciences of the University of Turin, Italy.

Transferrin saturation and serum ferritin were measured by standard procedures. Urines of patients and controls were collected in Italy, preserved with 0.05% sodium azide, and shipped frozen to Los Angeles, California. Additional controls were obtained in Los Angeles. Urinary hepcidin assay was performed as previously described. Cationic peptides were extracted from urine using CM Macro-prep (Bio-Rad Laboratories, Hercules, CA). Hepcidin concentrations were determined by an immunodot assay. Urine extracts equivalent to 0.1 to 0.5 mg creatinine were dotted on Immobilon-P membrane (Millipore, Bedford, MA) along with a range of synthetic hepcidin standards (0-80 ng). Hepcidin was detected using rabbit anti–human hepcidin antibody with goat anti–rabbit horseradish peroxidase (HRP) as a secondary antibody. Dot blots were developed by the chemiluminescent detection method (SuperSignal West Pico Chemiluminescent Substrate; Pierce Chemical, Rockford, IL) and quantified with the Chemidoc cooled camera running Quantity One software (Bio-Rad Laboratories).

Hepcidin quantity in each sample was normalized using urinary creatinine concentrations measured in UCLA Clinical Laboratories, and
urinary hepcidin levels were expressed as nanograms of hepcidin per milligram of creatinine.

Results

Molecular and clinical data of all patients examined are reported in detail elsewhere.

Table 1 shows the list of the studied cases, their TFR2 mutation status, and iron parameter levels at the time of urinary hepcidin measurements. Patients were homozygous for 4 different mutations (Y250X, E60X, M172K, and AVAQ S94-97del). Most had been previously treated by phlebotomy and were on maintenance therapy with 2 to 4 phlebotomies per year. As shown in Table 1, the interval from the last phlebotomy varied from 1 day to 3 years but was more than 15 days. It has been reported that phlebotomy suppresses hepcidin production in mice, but in our experience, phlebotomy treatment did not suppress hepcidin production.

Table 1. Characteristics of the patients studied

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>TFR2 genotype</th>
<th>Age, y</th>
<th>Sex</th>
<th>Hb level, g/dL</th>
<th>TS, %</th>
<th>Ferritin level, µg/L</th>
<th>Nanograms of hepcidin per milligram of creatinine</th>
<th>Therapy</th>
<th>Interval from last phlebotomy</th>
<th>Reference no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AVAQ homozygote</td>
<td>37</td>
<td>M</td>
<td>15.7</td>
<td>105</td>
<td>33</td>
<td>< 1</td>
<td>Phlebotomy</td>
<td>15 d</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>AVAQ homozygote</td>
<td>35</td>
<td>M</td>
<td>14.7</td>
<td>100</td>
<td>193</td>
<td>7</td>
<td>Phlebotomy</td>
<td>15 d</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>M172K homozygote*</td>
<td>55</td>
<td>M</td>
<td>12</td>
<td>82</td>
<td>300</td>
<td>< 1</td>
<td>deferoxamine 1 g s.c. 2x weekly</td>
<td>NA</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Y250X homozygote†</td>
<td>18</td>
<td>M</td>
<td>15.7</td>
<td>86</td>
<td>94</td>
<td>4</td>
<td>Phlebotomy</td>
<td>3 mo</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Y250X homozygote</td>
<td>66</td>
<td>F</td>
<td>13.1</td>
<td>78</td>
<td>292</td>
<td>19</td>
<td>Phlebotomy</td>
<td>2 mo</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Y250X homozygote</td>
<td>38</td>
<td>M</td>
<td>14.9</td>
<td>100</td>
<td>697</td>
<td>17</td>
<td>Phlebotomy</td>
<td>1 d</td>
<td>13</td>
</tr>
<tr>
<td>7a</td>
<td>Y250X homozygote†</td>
<td>3.5</td>
<td>M</td>
<td>11.9</td>
<td>70</td>
<td>45</td>
<td>57</td>
<td>—</td>
<td>NA</td>
<td>12</td>
</tr>
<tr>
<td>7b</td>
<td>Y250X homozygote†</td>
<td>3.5</td>
<td>M</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>90</td>
<td>—</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>E60X homozygote</td>
<td>42</td>
<td>M</td>
<td>15.7</td>
<td>78</td>
<td>623</td>
<td>15</td>
<td>Phlebotomy</td>
<td>3 y</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>E60X homozygote</td>
<td>48</td>
<td>F</td>
<td>12.5</td>
<td>82</td>
<td>159</td>
<td>46</td>
<td>Phlebotomy</td>
<td>3 y</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>E60X homozygote*</td>
<td>46</td>
<td>F</td>
<td>13.0</td>
<td>83</td>
<td>23</td>
<td>8</td>
<td>—</td>
<td>NA</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>HJV homozygote*</td>
<td>33</td>
<td>F</td>
<td>10.3</td>
<td>233</td>
<td>13</td>
<td>< 1</td>
<td>Phlebotomy</td>
<td>2 mo</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>AVAQ heterozygote</td>
<td>62</td>
<td>F</td>
<td>14.5</td>
<td>26</td>
<td>47</td>
<td>58</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>AVAQ heterozygote</td>
<td>67</td>
<td>M</td>
<td>16.8</td>
<td>34</td>
<td>66</td>
<td>82</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>AVAQ heterozygote</td>
<td>30</td>
<td>F</td>
<td>15.8</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Control 1</td>
<td>25</td>
<td>M</td>
<td>15.6</td>
<td>98</td>
<td>105</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Control 2</td>
<td>25</td>
<td>M</td>
<td>15.6</td>
<td>ND</td>
<td>ND</td>
<td>98</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Control 3</td>
<td>3</td>
<td>M</td>
<td>11.4</td>
<td>ND</td>
<td>ND</td>
<td>94</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Control 4</td>
<td>5</td>
<td>F</td>
<td>12</td>
<td>ND</td>
<td>ND</td>
<td>80</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Normal values for adults are as follows: 20% to 40% TS, less than 200 µg/L ferritin for females and less than 300 µg/L ferritin for males, and 10 to 200 ng hepcidin per milligram of creatinine using the immunoassay described by Nemeth et al. Hb indicates hemoglobin; TS, transferrin saturation; phlebotomy, maintenance phlebotomy; ND, not done; NA, not applicable; and s.c., subcutaneously.

*H63D heterozygote.
†Hb indicates hemoglobin; TS, transferrin saturation; phlebotomy, maintenance phlebotomy; ND, not done; NA, not applicable; and s.c., subcutaneously.

Discussion

We report here that urinary hepcidin is low or undetectable in most patients with TFR2-related hemochromatosis. These findings indicate that TFR2 is a modulator of hepcidin production. Most patients had received phlebotomy treatment, but urinary hepcidin was measured in most cases after intervals of more than 15 days. It has been reported that phlebotomy suppresses hepcidin mRNA production in mice, but in our experience, hepcidin levels return to normal within 1 week after phlebotomy. Five patients (cases 1 to 4 and 10) had hepcidin levels either undetectable or below the lower limit of the normal range, similar to the levels observed in juvenile hemochromatosis due to homojuvelin or hepcidin mutations (Papanikolau et al and case 11) (normal range, 10-200 ng/mg creatinine, based on unrelated controls from the United States and cases 15 and 16). Cases 5, 6, and 8, who had suboptimal disease control, as indicated by their high serum ferritin, had hepcidin levels in the low end of the normal range (10-20 ng/mg creatinine) but inappropriate to the degree of iron loading. Two patients had hepcidin levels in the midnormal range (patients 7 and 9).
patients had hepcidin levels that are clearly inappropriately low for the degree of iron loading. Their hepcidin levels were either unmeasurable, below the lower normal limit (10 ng/mg creatinine), or in the low end of normal levels (10 to 20 ng/mg creatinine) (normal range, 10-200 ng/mg creatinine). Two patients had midnormal hepcidin levels. One was a young child who had normal urinary hepcidin measured on 2 occasions. The data on hepcidin levels in children are lacking, but we found similar levels in 2 healthy children. The affected child, however, suffers from frequent pharyngeal infections. The second patient with normal hepcidin levels was healing from multiple bone fractures and had still increased erythrocyte sedimentation rate. It is likely that the higher hepcidin levels in the 2 cases relative to other TFR2 patients are related to chronic inflammatory conditions. This would suggest that TFR2-deficient subjects have low basal levels of hepcidin and inappropriate response to iron loading but can still respond to inflammation by increasing hepcidin production. However, even in these 2 cases, the hepcidin levels are lower than those observed in adults with inflammation.12,15 In addition, the hepcidin-ferritin ratio in case 9 was significantly reduced as compared with healthy controls and was similar to the ratio in other TFR2 patients. In agreement with our findings, down-regulation of hepcidin mRNA has been recently documented in Tfr2-deficient mice with the phenotype of hemochromatosis. In the same model, expression of hepcidin mRNA was induced by interleukin-6 (IL-6) and lipopolysaccharide (LPS).16

The ratio of urinary hepcidin to ferritin could be a useful index for assessing inadequate hepcidin responses to iron loading in hemochromatosis. The hepcidin-ferritin ratio is much less than 1 in nearly all of the patients with TFR2 hemochromatosis (with the exception of patient 7) but is close to 1 in heterozygotes and controls. In iron disorders other than hemochromatosis, this ratio is also close to 1.12 An alternative explanation for normal hepcidin levels observed in patient 7 might be that cumulative iron loading over many years is required to raise serum ferritin sufficiently for the hepcidin-ferritin ratio to become aberrant. At the age of 3 years, this may not have yet taken place (Table 1 and Figure 1).

The low or absent hepcidin levels in TFR2 patients resemble those observed in juvenile hemochromatosis. Like juvenile hemochromatosis patients, TFR2 patients have an early disease presentation,12,17 but they run a clinical course less severe than that seen in juvenile hemochromatosis.18

In agreement with the observation of a direct correlation between hepcidin and TFR2 mRNA expression in the liver,19 we speculate that TFR2 contributes to the basal hepcidin production, likely in response to transferrin saturation. Recent findings indicate that TFR2 might be a sensor of transferrin saturation, because the TFR2 protein is stabilized in vitro in the presence of dferferr transferrin.20,21 This would be of particular significance for our findings, because all the TFR2 patients showed increased transferrin saturation. However, the presence of normal TFR2 does not compensate for HFE dysfunction in iron-loaded patients with C282Y HFE mutations, indicating that hepcidin regulation by iron involves 2 parallel and partially redundant pathways. Conversely, in TFR2-deficient subjects, despite normal HFE, increased transferrin saturation did not induce hepcidin, except to a very limited extent in the 3 noncompliant patients with high serum ferritin.

Our results highlight that hepcidin is deficient in most genetic types of hemochromatosis. Thus, the lack of appropriate hepcidin response to iron loading could be a unifying diagnostic test for all these disorders.

Acknowledgments
We are indebted to our colleagues Alberto Piperno, Domenico Girelli, and Filomena Longo for providing urine samples of patients with TFR2 mutations.

References
regulated by anemia, hypoxia, and inflammation.

Hepcidin is decreased in TFR2 hemochromatosis

Elizabeta Nemeth, Antonella Roetto, Giovanni Garozzo, Tomas Ganz and Clara Camaschella