inflammatory protein family of cytokines (chemo-
kines) on proliferation of human myeloid progeni-
tor cells: interacting effects involving suppression,
synergistic suppression, and blocking of suppres-
34. Lu CY, Tang ZS. Interleukin-8 and inflammation
[In Chinese]. Sheng Li Ke Xue Jin Zhan. 1993;24:
351-353.
35. Broxmeyer HE, Cooper S, Cacalano G, Hague
NL, Balish E, Moore MW. Involvement of inter-
leukin (IL) 8 receptor in negative regulation of my-
eloid progenitor cells in vivo: evidence from mice
lacking the murine IL-8 receptor homologue. J
kine-8 as a macrophage-derived mediator of an-
37. Strierer RM, Polverini PJ, Kunkel SL, et al. Interleu-
kin-8 as a functional component of angiogenesis.
38. Berlin N. Diagnosis and classification of the poly-
39. de Wynter EA, Coutinho LH, Pei X, et al. Com-
parison of purity and enrichment of CD34(+) cells
from bone marrow, umbilical cord and peripheral
blood (primed for apheresis) using five separation
40. Mustard JF, Perry DW, Airdle NG, Packham MA.
Preparation of suspensions of washed platelets
41. Baungarth N, Roederer M. A practical approach
to multicolor flow cytometry for immunophenot-
42. Chomczynski P, Sacchi N. Single-step method of
RNA isolation by acid guanidinium thiocyanate-
phenol-chloroform extraction. Anal Biochem.
1987;162:156-159.
43. Heid CA, Stevens J, Livak KJ, Williams PM. Real
time quantitative PCR. Genome Res. 1996;6:
986-994.
44. Clay D, Rubinstein E, Mishal Z, et al. CD9 and
megakaryocyte differentiation. Blood. 2001;97:
45. Higuchi T, Koike K, Sawai N, et al. Megakaryo-
cytes derived from CD34-positive cord blood cells
produce interleukin-8. Br J Haematol. 1997;99:
509-516.
46. Majka M, Janowska-Wieczorek A, Ratajczak J, et
al. Numerous growth factors, cytokines, and che-
mokines are secreted by human CD34(+) cells,
myeloblasts, erythroid blasts and megakaryocytes
and regulate normal hematopoiesis in an auto-
crine/paracrine manner. Blood. 2001;97:3075-
3085.
47. Gewirtz AM, Zhang J, Ratajczak J, et al. Chemo-
kine regulation of human megakaryocyteopoiesis.
48. Daly TJ, LaRosa GJ, Dolich S, Maione TE. Coo-
per S, Broxmeyer HE. High activity suppression
of myeloid progenitor proliferation by chimeric
mutants of interleukin 8 and platelet factor 4.
49. Corre I, Pineau D, Hermouet S. Interleukin-8: an
autocrine/paracrine growth factor for human he-
matopoietic progenitors acting in synergy with
 colony stimulating factor-1 to promote monocyte-
macrophage growth and differentiation. Exp He-
50. Ratajczak J, Ratajczak MZ. In vitro study about
the influence of recombinant interleukin-8 on hu-
man hematopoiesis [in Polish]. Acta Haematol
51. Devalaraia MN, Richmond A. Multiple chemocac-
tic factors: fine control or redundancy? Trends
GFP-2-induced internalization of IL-8 receptors:
ierarchical relationships between GCP-2 and
other ELR(+)-CXC chemokines and mechanisms
regulating CXCR2 internalization and recycling.
production of interleukin (IL)-11 and IL-8 in poly-
54. Dudek AZ, Nezemlova I, Mayo K, Verfassie CM,
Pitchford S, Slungaard A. Platelet factor 4 pro-
motes adhesion of hematopoetic progenitor cells
and binds IL-8: novel mechanisms for modulation
55. Rosensling I, Broulard JP, Zini JM, Tobelem G,
Dupuy E. Mixed myelodysplastic syndrome and
myeloproliferative disorder with bone marrow and
pulmonary fibrosis: the role of megakaryocytes.
56. Rueda F, Pinol G, Marti F, Pujol-Moix N. Abnor-
mal levels of platelet-specific proteins and mito-
gen activity in myeloproliferative disease. Acta
57. Gilbert HS, Praloran V, Stanley ER. Increased
 circulating CSF-1 (M-CSF) in myeloproliferative
disease: association with myeloid metaphasia and
peripheral bone marrow extension. Blood. 1989;
74:1231-1234.
58. Le Bousse-Kerdiles MC, Chevillard S, Charpen-
tier A, et al. Differential expression of transform-
ing growth factor-beta, basic fibroblast growth
factor, and their receptors in CD34(+) hematopoiet-
ic progenitor cells from patients with myelofibro-
sis and myeloid metaphasia. Blood. 1996;88:
4534-4546.
59. Rameshwar P, Denny TN, Stein D, Gascon P.
Monocyte adhesion in patients with bone marrow
fibrosis is required for the production of fibrogenic
cytokines: potential role for interleukin-1 and

Erratum

In the response letter by Arbab et al entitled “Feride–protamine sulfate
labeling does not alter differentiation of mesenchymal stem cells,” which
appeared in the November 15, 2004, issue of Blood (Volume 104:3412-
3413), the title’s first word was incorrect. The title should read “Ferumoxide–
protamine sulfate labeling does not alter differentiation of mesenchymal stem
cells.”
Erratum for vol. 104, p. 3410

Updated information and services can be found at:
http://www.bloodjournal.org/content/105/2/473.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml