Brief report

Phenotypic characterization of the human myeloma cell growth fraction

Nelly Robillard, Catherine Pellat-Deceunynck, and Régis Bataille

In this study we quantified the proliferation rate of normal and malignant plasma cells (PCs) by ex vivo incorporation of 5-bromo-2′-deoxyuridine (BrdU; labeling index, LI) using flow cytometry. We showed that all bone marrow PCs, either normal or malignant, include a subset of proliferating PCs present within the CD45bright fraction. Indeed, medullary normal and malignant PCs were always heterogeneous for CD45 expression, and proliferation was always restricted primarily to the CD45bright compartment. Moreover, an inverse correlation was found between LI or CD45 and B-cell lymphoma 2 (Bcl-2) in both malignant and normal PCs, the most proliferating CD45bright PCs have the lowest Bcl-2 expression. We investigated expression of molecules of interest in multiple myeloma (MM)—that is, CD138, CD19, CD20, CD27, CD28, CD56, and CD11a—to further characterize the CD45bright fraction. Among all of these molecules, only CD11a was exclusively expressed by CD45bright proliferating myeloma cells. In conclusion, proliferating myeloma cells are characterized by the specific CD45bright CD11apos Bcl-2low phenotype. (Blood. 2005;105:4845-4848)

© 2005 by The American Society of Hematology

Introduction

Multiple myeloma (MM) is primarily conceptualized as an accumulative disease. Indeed, most studies evaluating the labeling index (LI) of plasma cells (PCs) revealed that it rarely exceeded 1%. However, as early as 1981, Drewinko et al1 showed that in vivo myeloma cells were generally nonproliferating, although a small fraction of them could proliferate (growth fraction, GF). Thus, they proposed the concept that this minor GF could give rise to the major nonproliferating fraction.

Myeloma cells either lack or express a weak to intermediate level of CD45.2,3 However, in previous studies we have shown that CD45 and also CD11a are frequently expressed by a subset of myeloma cells only.3 It has been demonstrated that CD45 expression is highly correlated with the proliferation rate of myeloma cells.4,5 With regard to normal counterparts, PCs are heterogeneous in terms of CD45 phenotype. Recently, Medina et al6 confirmed the association of maturity with decreasing CD45 expression.7-9 Generation of PCs from B cells, mainly studied in vitro in humans, is a multistep process that involves both proliferation and maturation/differentiation.10-13 The aim of this study was to evaluate the proliferation of different types of normal PCs in relation to their phenotype, especially to CD45, to understand the biology of polyclonal and monoclonal PC expansions that are reactive plasmacytoses (RP) and MM, respectively.

Study design

Samples and reagents

Forty-nine consecutive patients with MM (25 at diagnosis, 24 at relapse) were included in this study. Bone marrow and blood samples from healthy donors or patients with reactive plasmacytosis, and tonsil samples were obtained and prepared as described.3,13 Approval was obtained from the Nantes University Hospital Institutional Review Board for these studies. Informed consent was provided according to the Declaration of Helsinki. Antibodies directed against (1) CD11a, CD19, CD45, CD138, APO2.7 and (2) CD28, CD38, CD56, 5-bromo-2′-deoxyuridine (BrdU) were from Beckman Coulter (Miami, FL) and BD Biosciences (San Jose, CA), respectively.

Cell staining

Mononuclear cells (MNCs; 0.5-3 x 10⁶) were stained in a 4-color assay with anti-CD45-fluorescein isothiocyanate (FITC; J33), anti-CD138-phycocerythrin cyanine 5 (PECy5; B-B4), anti-CD38–APC (HB7) and control-PE, anti-CD56–PE (MY31), anti-CD28–allophycocyanin (PE; L293), anti-CD19–PE (J4.119), anti-APO2.7–PE (2.7A6A5), anti-CD11a–PE (25.3) monoclonal antibodies (mAbs) as described.14 To determine CD45-FITC fluorescent staining, MNCs were stained with isotype-FITC, anti-CD38–APC, anti-CD45–PECy5, and anti-CD138–PE mAbs. For intracellular Bcl-2 staining, MNCs were first stained with anti-CD38–APC, anti-CD45–PECy5, and anti-CD138–PE mAbs, then with anti-Bcl-2–FITC (124; Dako, Glostrup, Denmark) or control isotype-FITC mAbs after permeabilization (Intra Prep; Beckman Coulter). For LI, cells were incubated overnight with or without 50 μM BrdU (5-bromo-2′-deoxyuridine; Sigma, St Louis, MO) at 37°C in culture medium, then stained with anti-CD45–APC, anti-CD38–PE, and anti-CD138–PECy5 mAbs (with anti-CD45–APC and anti-CD38–PE mAbs for tonsil and blood PCs), permeabilized, and stained with anti-BrdU as described.12

Flow cytometry analysis

Data were acquired by means of a Becton Dickinson fluorescein-activated cell sorting FACSCalibur with CellQuest Pro software (BD Biosciences).14 PCs were identified using a sequential gating strategy (Figure 1).
Results and discussion

Myeloma cells and bone marrow PCs were heterogeneous: proliferation was restricted to the CD45bright SSC^{high} compartment

The percentage of BrdU-positive myeloma cells was low, generally around 1% (n = 49 patients). In all patients, myeloma cells were heterogeneous for CD45 expression and SSC, allowing a delineation of 2 compartments: CD45^{bright}SSC^{high} and CD45^{int/low}SSC^{low}. The CD45^{bright}SSC^{high} compartment was always present, representing 12% (median) of myeloma cells (illustrated in Figure 1). The second compartment CD45^{int/low}SSC^{low} represented the majority of tumor cells (88%). We observed that the LI of the CD45^{bright}SSC^{high} compartment was always greater than that of the CD45^{int/low}SSC^{low} compartment and far above 1% (median, 6.8%; n = 49; Table 1). In general, the CD45^{bright}SSC^{high} compartment had a 6.8 higher proliferative level than the CD45^{int/low}SSC^{low} compartment (P < .01). As outlined in Table 1, the LI of the CD45^{bright}SSC^{high} compartment could reach 40% of myeloma cells, which was similar to what we observed in reactive plasmacytoses, suggesting that in these patients, almost all CD45^{bright} myeloma cells were proliferating. Of note, the total LI correlated highly with the LI of the CD45^{bright} compartment (r = 0.81, P < .001) and less with that of the CD45^{low} compartment (r = 0.44, P < .01).

As observed for myeloma cells, 2 compartments of PCs delineated by CD45 and SSC were found in normal bone marrows (n = 11, illustrated in Figure 1). The CD45^{bright}SSC^{high} compartment, which represented 65% of the PCs, was highly proliferative (LI = 18.4% for BM1). The second CD45^{low}SSC^{low} compartment included 35% of the PCs with a much lower LI: 2.6% (BM1 and Table 1). A subset of PCs which lacked CD45 expression was observed in 2 cases.

Tonsillar and peripheral PCs were homogeneous and were capable of proliferation

In Figure 2, we show that PCs from both tonsils and blood, the prototypes of immature PCs, were homogeneously CD45^{bright} and capable of proliferation (LI > 10%). Reactive PCs turned out to be similar to blood PCs with higher LI.

BrdU⁺ myeloma cells expressed lower Bcl-2 levels

Since we have previously observed that Bcl-2 inversely correlates with the LI in both reactive PCs and myeloma cells, we looked for a correlation within myeloma and PC subsets (Figures 1-2). We found that CD45^{bright} myeloma cells always expressed a lower level of Bcl-2 compared with that of CD45^{low} myeloma cells (P < .01). In normal bone marrow (BM), a significant increase in Bcl-2 expression (mean of fluorescence intensity ratio) was observed in 2 cases.

Phenotypic characterization of the CD45^{bright} SSC^{high} proliferating compartment in MM: only CD11a expression was restricted to the CD45^{bright} SSC^{high} subset

We further characterized the phenotype of the CD45^{bright} myeloma cells using relevant MM markers (CD19, CD20, CD27, CD28, CD56). As illustrated in Figure 3, CD19, CD27, CD28, and CD56 were expressed or not by myeloma cells, and their expression was unrelated to CD45 subsets. However, we found that CD11a...
overlapped completely with the CD45bright compartment in all the patients studied (Figure 3), while CD45low/neg myeloma cells were negative for CD11a. Ahsmann et al.19 have published that lymphocyte function-associated antigen 1 (LFA-1) (CD11a-CD18) expression correlated with tumor growth in MM. LFA-1 is involved in either homotypic or heterotypic interactions in MM. Indeed, human myeloma cells, like stromal cells, express the 3 ligands of LFA-1: intercellular adhesion molecule-1 (ICAM-1) (CD54), ICAM-2 (CD102), and ICAM-3 (CD50).3,20 These interactions, restricted to

Table 1. CD45 expression and labeling index of PCs

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Cells, %</th>
<th>MFIR</th>
<th>PCLI, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45high/SSChigh</td>
<td>12</td>
<td>2-68</td>
<td>34</td>
</tr>
<tr>
<td>CD45low/SSClow</td>
<td>88</td>
<td>32-98</td>
<td>1.2</td>
</tr>
<tr>
<td>Normal bone marrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45high/SSChigh</td>
<td>65</td>
<td>45-87</td>
<td>29.8</td>
</tr>
<tr>
<td>CD45low/SSClow</td>
<td>35</td>
<td>13-55</td>
<td>1.7</td>
</tr>
<tr>
<td>Tonsil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45high/SSChigh</td>
<td>100</td>
<td>43-100</td>
<td>75</td>
</tr>
<tr>
<td>CD45low/SSClow</td>
<td>0</td>
<td>0-57</td>
<td>—</td>
</tr>
<tr>
<td>Peripheral blood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45high/SSChigh</td>
<td>100</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>CD45low/SSClow</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Reactive plasmacytosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45high/SSChigh</td>
<td>100</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>CD45low/SSClow</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

MFIR indicates mean of fluorescence intensity ratio; PCLI, plasma cell labeling index; and —, no data (no cells).

Figure 2. CD45 phenotype and LI of tonsillar, peripheral normal, and reactive PCs. Analysis of phenotype, LI, and Bcl-2 expression in PCs isolated from tonsillar and blood. PCs were identified by CD38+ expression (SSC/CD38) since CD138 expression was low in tonsillar PCs and heterogeneous in peripheral PCs.

Figure 3. Phenotype of CD45bright myeloma cells. The phenotype of myeloma cells from 4 patients was determined in a 4-color assay. Myeloma cells were identified by coexpression of CD38 and CD138, and their phenotype (CD11a, CD19, CD27, CD28, CD56, Apo2.7) was analyzed in both CD45low/neg and CD45bright subsets. Ig indicates immunoglobulin.
the most proliferative compartment, could have some important consequences for tumor behavior. For example, we have previously observed that ICAM-2/LFA-1 interactions were involved in the (negative) control of myeloma cell growth through CD40.

Interleukin 6 (IL-6) has been shown to be a survival and growth factor for human myeloma cells.\(^1\)\(^{2}\) More recently, it has been demonstrated that IL-6 preferentially stimulates CD45\(^{\text{bright}}\) myeloma cells to proliferate\(^2\)\(^{3}\) through activation of CD45-associated src kinase.\(^2\)\(^{4}\) Of note, CD45\(^{\text{bright}}\) myeloma cells express more IL-6 receptors.\(^2\)\(^{5}\) IL-6 is also a survival and proliferative factor for nonmalignant PCs.\(^1\)\(^{2}\)\(^{3}\)\(^{6}\) Taken altogether, these data show that CD45\(^{\text{bright}}\) myeloma cells, like their normal counterparts (CD45\(^{\text{bright}}\) normal PCs), could be the main target of IL-6 to sustain survival and proliferation.

In conclusion, we have found that all patients with MM have a small proliferative compartment of myeloma cells characterized by a bright expression of CD45 and a specific expression of CD11a as well as a low Bcl-2 expression (sensitive to apoptosis). This CD45\(^{\text{bright}}\)CD11a\(^{\text{pos}}\) population of myeloma cells could constitute the growth fraction as defined in vivo by Drewinko et al\(^1\) more than 20 years ago. Thus, this “to be killed” population could be targeted through CD45- or CD11a-targeted therapies.

References

Phenotypic characterization of the human myeloma cell growth fraction

Nelly Robillard, Catherine Pellat-Deceunynck and Régis Bataille