Synergistic interactions between imatinib mesylate and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming imatinib mesylate resistance

Ping-Hui Tseng, Ho-Pi Lin, Jixiang Zhu, Kuen-Feng Chen, Erinn M. Hade, Donn C. Young, John C. Byrd, Michael Grever, Kara Johnson, Brian J. Druker, and Ching-Shih Chen

Resistance to the Ableson protein tyrosine (Abl) kinase inhibitor imatinib mesylate has become a critical issue for patients in advanced phases of chronic myelogenous leukemia. Imatinib-resistant tumor cells develop, in part, as a result of point mutations within the Abl kinase domain. As protein kinase B (Akt) plays a pivotal role in Abl oncogene-mediated cell survival, we hypothesize that concurrent inhibition of Akt will sensitize resistant cells to the residual apoptotic activity of imatinib mesylate, thereby overcoming the resistance. Here, we examined the effect of OSU-03012, a celecoxib-derived phosphoinositide-dependent kinase-1 (PDK-1) inhibitor, on imatinib mesylate–induced apoptosis in 2 clinically relevant breakpoint cluster region (Bcr)–Abl mutant cell lines, Ba/F3p210E255K and Ba/F3p210T315I. The 50% inhibitory concentration (IC50) values of imatinib mesylate to inhibit the proliferation of Ba/F3p210E255K and Ba/F3p210T315I were 14 ± 4 and 30 ± 2 μM, respectively. There was no cross-resistance to OSU-03012 in these mutant cells with an IC50 of 5 μM irrespective of mutations. Nevertheless, in the presence of OSU-03012 the susceptibility of these mutant cells to imatinib-induced apoptosis was significantly enhanced. This synergistic action was, at least in part, mediated through the concerted effect on phospho-Akt. Together these data provide a novel therapeutic strategy to overcome imatinib mesylate resistance, especially with the Abl mutant T315I. (Blood. 2005;105:4021-4027)

© 2005 by The American Society of Hematology
In addition, PI3K inhibitors have been shown to synergize with imatinib mesylate in inhibiting CML cell growth.28 Together these findings suggest the clinical relevance of targeting Akt signaling in imatinib-resistant patients.28

Recently, based on our finding that the cyclooxygenase-2 (COX-2) inhibitor celecoxib mediates apoptosis by blocking phosphoinositide-dependent kinase-1 (PDK-1)/Akt signaling independently of COX-2 inhibition, we have used celecoxib as a scaffold to develop a novel class of PDK-1 inhibitors with high potency in deactivating Akt and inducing apoptosis in cancer cells.29 These celecoxib-derived PDK-1 inhibitors, however, are devoid of COX-2 inhibitory activity. Here, we examined the effect of an optimal inhibitor (OSU-03012), alone or in combination with imatinib mesylate, in Bcr-Abl–expressing Ba/F3 cells (Ba/F3p210T315I) vis-à-vis 2 mutant cell lines (Ba/F3p210E255K and Ba/F3p210D195K), both of which are highly resistant to high doses of imatinib mesylate.30,31 Previous studies have shown that arsene oxide (As2O3), 5-aza-2-deoxycytidine (decitabine), or the famesyl transferase inhibitor SCH66336 could not cooperate with imatinib mesylate in enhancing its in vitro efficacy in Ba/F3p210T315I cells.30,32 Here we hypothesize that concurrent inhibition of PDK-1/Akt signaling would sensitize imatinib mesylate-resistant cells to the residual apoptotic effects of imatinib mesylate, thereby overcoming the resistance. This premise is corroborated by the ability of OSU-03012 to restore the sensitivity of Ba/F3p210E255K and Ba/F3p210D195K to imatinib mesylate by shifting the dose-response curve to the left by more than 1 log unit.

Materials and methods

Reagents and cell culture

Imatinib mesylate, also known as STI571, was obtained from commercial imatinib mesylate capsules (Novartis Pharmaceuticals, East Hanover, NJ) by solvent extraction followed by recrystallization. The PDK-1 inhibitor OSU-03012 was synthesized as described.28 Rabbit polyclonal anti-Akt and rabbit monoclonal anti-PARP (anti-poly–adenosine diphosphate [ADP]–ribose polymerase) were purchased from Cell Signaling Technology (Beverly, MA). Rabbit antibodies against phospho-Thr308-Akt were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Mouse monoclonal anti–cytochrome c, anti-Bcr, and antiactin were from BD Pharmingen (San Diego, CA), Oncogene (Boston, MA), and ICN Biomedicals (Costa Mesa, CA), respectively. Goat anti–rabbit and goat anti–mouse immunoglobulin G (IgG) horseradish peroxidase conjugates were from Jackson ImmunoResearch Laboratories (West Grove, PA). A murine myeloid hematopoietic cell line (32D) and a lymphoid cell line (Ba/F3) were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS; Gibco, Carlsbad, CA); 15% Walter and Eliza Hall Institute (WEHI)–conditioned media as an interleukin 3 (IL-3) source; and 50 units/mL penicillin G, 50 μg/mL streptomycin, and 10 μg/mL gentamicin (Sigma, St Louis, MO). Ba/F3p210E255K and 2 imatinib-resistant Ba/F3p210mutant cell lines, Ba/F3p210E255K and Ba/F3p210D195K, were generated as previously reported.31 These cells were cultured in RPMI 1640 medium containing 10% FBS, 50 units/mL penicillin G, 50 μg/mL streptomycin, and 10 μg/mL gentamicin (Sigma) at 37°C in 5% CO2.

Cell proliferation assay (MTS assay)

Cell proliferation was analyzed by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega, Madison, WI) in 6 replicates. Cells (5000/well) were grown in 10% FBS-supplemented RPMI 1640 medium in 96-well flat-bottomed plates and exposed to various concentrations of individual agents or combination of drugs dissolved in dimethyl sulfoxide (DMSO); final concentration ≤ 0.1% in the same medium. Control groups received DMSO vehicle at a concentration equal to that in drug-treated cells. After 48-hour treatment, MTS and the phenazine methosulfate (PMS) detection reagent were mixed at a ratio of 20:1 (MTS/PMS) and immediately added to the culture medium at a ratio of 1:5. Cells were incubated in the CO2 incubator at 37°C for 3 hours and the production of formazan was analyzed by measuring the absorbance at 492 nm in a plate reader.

Immunoblotting

The general procedure for the Western blot analysis of Bcr-Abl, Akt, phospho-Akt, and phosphatase inhibitors was performed as follows. Cells were collected by centrifugation at 2000g and resuspended in radioimmunoprecipitation assay (RIPA) lysis buffer consisting of 50 mM tris(hydroxymethyl)aminomethane (Tris)–HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA (ethylenediaminetetraacetic acid), 1% Triton X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and a mixture of protease inhibitor cocktail (100 μM 4-(2-aminoethyl) benzenesulfonyl fluoride, 80 mM apritinin, 5 μM bestatin, 1.5 μM E-64 protease inhibitor, 2 μM leupeptin, 1 μM pepstatin A [Calbiochem, La Jolla, CA]) and phosphatase inhibitors (10 μM sodium fluoride, 5 μM sodium vanadate, and 10 μM β-glycerol phosphate). The mixture was sonicated for 5 seconds and protein contents were analyzed by using the Bradford assay kit (Bio-Rad, Hercules, CA). Twenty-five micrograms total protein was resolved in SDS–polyacrylamide gels on a Mini-gel apparatus and transferred to a nitrocellulose membrane using a semidry transfer cell. The transblotted membrane was washed 3 times with Tris-buffered saline (TBS) containing 0.05% Tween 20 (TBST). After blocking with TBST containing 5% nonfat milk for 60 minutes, the membrane was incubated with the appropriate primary antibody at 1:1000 dilution in TBST–5% nonfat milk at 4°C overnight and then washed 3 times with TBST. The membrane was probed with horseradish peroxidase–conjugated secondary antibody at 1:3000 for 1 hour at room temperature and then washed with TBST 3 times. The immunoblots were visualized by enhanced chemiluminescence. The density of the blot was further analyzed by densitometry using the Gel-Pro Analyzer (Media Cybernetics, San Diego, CA).

Assessment of apoptosis

Flow cytometric analysis. Fluorescein-conjugated annexin V (annexin V–FITC) and propidium iodide (PI; BD Pharmingen) were used to quantify Annexin V–FITC+PI− early apoptotic cells as well as PI+ annexin V− late apoptotic or necrotic cells. The general procedure for the annexin V–FITC/PI assay was carried out according to the manufacturer’s instructions. All cells were assayed in triplicate.

Flow cytometric analysis. Fluorescein-conjugated annexin V (annexin V–FITC) and propidium iodide (PI; BD Pharmingen) were used to quantify Annexin V–FITC+PI− early apoptotic cells as well as PI+ annexin V− late apoptotic or necrotic cells. The general procedure for the annexin V–FITC/PI assay was carried out according to the manufacturer’s instructions. All cells were assayed in triplicate.

Cytochrome c release analysis. Cytosol-specific mitochondria-free lysates were prepared as previously described.33 Drug-treated cells were collected by centrifugation at 1000g for 5 minutes. The pellet fraction was recovered, placed on ice, and resuspended in 100 μL of a chilled hypotonic lysis solution (220 mM mannitol; 68 mM sucrose; 50 mM PIPES [piperazine diethanesulfonic acid]–KOH, pH 7.4; 140 mM NaCl; 2.5 mM CaCl2) at a concentration of 5 × 106 cells/mL. A 200-μL solution (1 × 106) was transferred to a culture tube, to which were added annexin V–FITC and PI. The cells were gently vortexed and incubated for 15 minutes at room temperature in the dark. An additional 800 μL of binding buffer was added to each tube and the samples were analyzed by flow cytometry.

Cytochrome c release analysis. Cytosol-specific mitochondria-free lysates were prepared as previously described.33 Drug-treated cells were collected by centrifugation at 1000g for 5 minutes. The pellet fraction was recovered, placed on ice, and resuspended in 100 μL of a chilled hypotonic lysis solution (220 mM mannitol; 68 mM sucrose; 50 mM PIPES [piperazine diethanesulfonic acid]–KOH, pH 7.4; 140 mM NaCl; 2.5 mM CaCl2) at a concentration of 5 × 106 cells/mL. A 200-μL solution (1 × 106) was transferred to a culture tube, to which were added annexin V–FITC and PI. The cells were gently vortexed and incubated for 15 minutes at room temperature in the dark. An additional 800 μL of binding buffer was added to each tube and the samples were analyzed by flow cytometry.

Western blot analysis of PARP cleavage. Cells that were drug treated for 48 hours were collected, washed with ice-cold phosphate-buffered saline (PBS), and resuspended in the aforementioned lysis buffer. Soluble cell lysates were collected after centrifugation at 10 000g for 5 minutes. Equivalent amounts of proteins (50 μg) from each lysate were resolved in...
B1, B2, B3, and B4 represent annexin V/H11002 overexpressing wild-type or mutant Bcr-Abl after treatment with DMSO vehicle or 1 or cytochrome (Cyt. c) to imatinib mesylate. Each data point (F) and untransfected Ba/F3 cells (G) respectively; FL1-H indicates annexin V–FITC; FL3-H, propidium iodide. The percent-ages in the graphs represent the percent of cell numbers in the respective quadrants.

Figure 1. Differential susceptibility of Ba/F3p210 Bcr-Abl, Ba/F3p210E255K, and Ba/F3p210T315I cells to imatinib mesylate. (A) Dose-response curves obtained by MTS assays after 48-hour exposure of Ba/F3p210Bcr-Abl (wild-type [WT]; ○), Ba/ F3p210E255K (E225K; ●), and Ba/F3p210T315I (T315I; □) cells versus the control 32D (■) and untransfected Ba/F3 cells (×) to imatinib mesylate. Each data point represents means ± SD (n = 6). (B) Dose-dependent effect of imatinib mesylate on cytochrome c (Cyt. c) release. The immunoblots are representative of 3 independent experiments. (C) Flow cytometric analysis of apoptotic death in the 3 cell lines overexpressing wild-type or mutant Bcr-Abl after treatment with DMSO vehicle or 1 or 10 μM imatinib mesylate for 48 hours. Results are representative of at least 3 independent experiments. B1, B2, B3, and B4 represent annexin V–PI–, annexin V–/PI–, annexin V+/PI+, annexin V+/PI+ (late apoptosis), annexin V+/PI+/PI–, and annexin V–/PI– (early apoptosis), respectively; FL1-H indicates annexin V–FITC; FL3-H, propidium iodide. The percentages in the graphs represent the percent of cell numbers in the respective quadrants.

10% SDS–polyacrylamide gels. Bands were transferred to nitrocellu-lose membranes and analyzed by immunoblotting with monoclonal anti-PARP antibody.

Statistical analysis and determination of synergism

The medium-effect method was used to analyze dose-response data for single drug or multiple drugs. The synergistic effect of multiple drugs was determined by the definition of Chou and Talalay. A combination index (CI) less than 1 was defined as synergism. By using the software package Calcsyn (Biosoft, Cambridge, United Kingdom), the values of IC50, the drug concentration required for 50% growth inhibition, and CI were calculated. These drugs were assumed as totally independent modes of action and are therefore mutually nonexclusive. The sign test, a nonparamet-ric test, was used to test the hypothesis that combination indices for drugs were less than 1. The Jonckheere-Terpstra test, a nonparametric test for trend, was used to test the hypothesis that combination indices for drugs were less than 1. The Jonckheere-Terpstra test, a nonparametric test for trends in ordered groups, was used to evaluate the decreasing trend in the relationship between drug concentrations and the densitometry values of phospho-Akt.

Results

Differential inhibitory effects of imatinib mesylate on Akt activation

In line with the earlier reports, Ba/F3p210 Bcr-Abl, Ba/F3p210E255K, and Ba/F3p210T315I exhibited differential sensitivity to imatinib mesylate’s antiproliferative effects. MTS assays indicate that the IC50 values for Ba/F3p210E255K and Ba/F3p210T315I were 14 ± 4 and 30 ± 2 μM, respectively, 2 orders of magnitude greater than the wild-type counterpart (0.13 ± 0.01 μM; Figure 1A). Imatinib mesylate, however, was ineffective against the cell lines 32D and untransfected Ba/F3 (with IC50 > 50 μM; Figure 1A), indicating the pivotal role of Bcr-Abl in the drug action. Furthermore, characterizations of cytochrome c release and phosphatidylinerine externalization indicate that the thresholds for imatinib mesylate to trigger apoptosis in Ba/F3p210E255K and Ba/F3p210T315I cells were approximately 10 and 20 μM, respectively, vis-à-vis 0.1 μM for Ba/F3p210Bcr-Abl (Figure 1B-C). Flow analysis indicates that at 10 μM the extents of imatinib mesylate-induced apoptotic death (annexin V–positive cells) were 97%, 35%, and 6% in Ba/F3p210Bcr- Abl, Ba/F3p210E255K, and Ba/F3p210T315I, respectively (Figure 1C). As Akt signaling represents a major pathway through which Bcr-Abl mediates oncogenic effects in CML cells, we further assessed the effect of imatinib mesylate on Akt activation in wild-type versus mutant Bcr-Abl–overexpressing Ba/F3 cells. Because overexpression of Bcr-Abl up-regulates PI3K/Akt signaling, Ba/F3p210Bcr-Abl, Ba/F3p210E255K, and Ba/F3p210T315I exhibited substantially higher levels of Akt phosphorylation, irrespective of mutations, compared with that of 32D and untransfected Ba/F3 cells (Figure 2A). However, the respective susceptibility of these 3 cell lines to the inhibitory effect of imatinib mesylate on Akt varied to a great extent.

Densitometry analysis of the immunoblots shows that exposure of Ba/F3p210Bcr-Abl to imatinib mesylate, even at concentrations as low as 0.5 μM, led to complete Akt deactivation (Figure 2B). A decreasing trend of phospho-Akt was noted with increasing imatinib mesylate concentrations in Ba/F3p210E255K and Ba/ F3p210T315I (trend P values were .004 and .022, respectively, according to the Jonckheere-Terpstra test). The estimated IC50 values for imatinib-mediated Akt dephosphorylation were approximately 10 and 20 μM for Ba/F3p210E255K and Ba/F3p210T315I.
respectively. Together these data suggested a putative link between imatinib mesylate resistance and Akt signaling. Accordingly, we hypothesized that concurrent inhibition of Akt could lower the threshold of imatinib-mediated apoptosis, thereby overcoming imatinib mesylate resistance.

The PDK-1/Akt signaling inhibitor OSU-03012 induces apoptosis irrespective of Bcr-Abl mutation

To test this hypothesis we examined the antiproliferative effects of the PDK-1 inhibitor OSU-03012, a structurally optimized derivative of celecoxib, which exhibits IC₅₀ in PDK-1 inhibition of 5 μM. However, the consequent effect on intracellular Akt is more pronounced presumably due to the concurrent action of protein phosphatase 2A in Akt dephosphorylation. As a result, this agent sensitized, to a great extent, Ba/F3p210E255K and Ba/F3p210T315I, both of which exhibited IC₅₀ greater than 10 μM against imatinib mesylate, were treated with varying concentrations of imatinib mesylate in the presence of 5 μM OSU-03012 or vice versa. As shown by the dose-response curves in Figure 3A, OSU-03012 sensitized, to a great extent, Ba/F3p210E255K and Ba/F3p210T315I cells to imatinib-induced cell death. For example, imatinib mesylate alone was ineffective in preventing cell proliferation within therapeutically attainable concentrations (≤ 5 μM; Figure 4A left panel dotted lines). However, in the presence of 5 μM OSU-03012, the susceptibility of these mutant cells to imatinib-induced apoptosis increased by more than one order of magnitude (Figure 4A left panel solid lines) with an apparent IC₅₀ of 1 μM. Annexin V analysis indicates that in combination with 5 μM OSU-03012, imatinib mesylate at 2.5 and 5 μM caused 70% and greater than 95% cell death, respectively (Figure 4B). Similarly, imatinib mesylate at 5 μM also sensitized Ba/F3p210E255K and Ba/F3p210T315I cells to OSU-03012-mediated apoptosis (Figure 4A right panel) with a reduction of IC₅₀ from 5 μM to less than 3 μM. Medium dose analysis of apoptosis induction in Ba/F3p210E255K and Ba/F3p210T315I cells was carried out over a range of OSU-03012 and imatinib mesylate concentrations at a fixed ratio (1:1) for 48 hours, after which CI values for apoptosis were determined in relation to the fraction affected. As shown in Figure 4C, the resulting CI values were significantly less than 1, which are considered as a synergistic interaction. A combination of imatinib mesylate and OSU-03012 at 5 μM each represented an effective treatment to completely eliminate these imatinib-resistant cells.

In addition, Western blot analysis indicates that OSU-03012 was able to diminish the phospho-Akt level at a concentration as low as 1 μM in these 3 cell lines irrespective of Bcr-Abl mutation (data not shown). Exposure to OSU-03012 over the range of 5 to 7.5 μM resulted in complete Akt dephosphorylation, with a reduction of IC₅₀ from 5 μM to less than 3 μM. This reduction in phospho-Akt levels was observed in all cell lines irrespective of Bcr-Abl mutations, as shown by the dose-response curves (Figure 3A). Together these data clearly demonstrate the lack of cross-resistance to OSU-03012 in these imatinib mesylate-resistant cells.

OSU-03012 sensitizes imatinib mesylate-resistant cells to imatinib-induced apoptosis

To explore the effect of OSU-03012 on imatinib mesylate resistance, Ba/F3p210E255K and Ba/F3p210T315I cells, both of which exhibited IC₅₀ greater than 10 μM against imatinib mesylate, were treated with varying concentrations of imatinib mesylate in the presence of 5 μM OSU-03012 or vice versa. As shown by the dose-response curves in Figure 4A, OSU-03012 sensitized, to a great extent, Ba/F3p210E255K and Ba/F3p210T315I cells to imatinib-induced cell death. For example, imatinib mesylate alone was ineffective in preventing cell proliferation within therapeutically attainable concentrations (≤ 5 μM; Figure 4A left panel dotted lines). However, in the presence of 5 μM OSU-03012, the susceptibility of these mutant cells to imatinib-induced apoptosis increased by more than one order of magnitude (Figure 4A left panel solid lines) with an apparent IC₅₀ of 1 μM. Annexin V analysis indicates that in combination with 5 μM OSU-03012, imatinib mesylate at 2.5 and 5 μM caused 70% and greater than 95% cell death, respectively (Figure 4B). Similarly, imatinib mesylate at 5 μM also sensitized Ba/F3p210E255K and Ba/F3p210T315I cells to OSU-03012-mediated apoptosis (Figure 4A right panel) with a reduction of IC₅₀ from 5 μM to less than 3 μM. Medium dose analysis of apoptosis induction in Ba/F3p210E255K and Ba/F3p210T315I cells was carried out over a range of OSU-03012 and imatinib mesylate concentrations at a fixed ratio (1:1) for 48 hours, after which CI values for apoptosis were determined in relation to the fraction affected. As shown in Figure 4C, the resulting CI values were significantly less than 1, which are considered as a synergistic interaction. A combination of imatinib mesylate and OSU-03012 at 5 μM each represented an effective treatment to completely eliminate these imatinib-resistant cells.

Such a synergy, however, was not noted with 32D and Ba/F3 cells that lacked Bcr-Abl expression (Figure 5A), even though OSU-03012 was able to facilitate Akt dephosphorylation in both cell systems (Figure 5B). This synergistic action was, at least in part, mediated through the concerted effect of OSU-03012 and imatinib mesylate on phospho-Akt. Exposure of Ba/F3p210E255K and Ba/F3p210T315I cells to the drug combination did not affect the Bcr-Abl expression level (Figure 6A). However, imatinib mesylate at varying concentrations could augment the effect of 5 μM OSU-03012 on phospho-Akt in both cell lines (Figure 6B). Complete Akt dephosphorylation was achieved with a combination of 5 μM imatinib mesylate and 5 μM OSU-03012, in line with the optimal combination to elicit complete apoptotic death in these mutant cells. Similar augmenting effects were also noted with the combination of varying concentrations of OSU-03012 with 5 μM imatinib mesylate (Figure 6B).
Discussion

Development of new therapeutic strategies to overcome imatinib mesylate resistance in accelerated CML has been the focus of many recent investigations. In the literature, at least 3 distinct approaches have been reported. First, recent efforts have led to the identification of several novel Abl inhibitors capable of inhibiting some or all of mutant Abl kinases, which include PD180970,31 BMS-354825,38 and AP23464.39 In addition, the Bcr-Abl chaperone heat shock protein 90 inhibitors geldanamycin and 17-allylamino-geldanamycin have also been shown to inhibit the growth of imatinib-resistant hematopoietic cells found in patients with T315I and E255K mutation.40 Second, cotreatment of imatinib-resistant cells with antileukemic agents such as As2O3, decitabine, the farnesyl transferase inhibitor SCH66336, and the histone deacetylase inhibitors suberoylanilide hydroxamic acid (SAHA) and butyrate could enhance the antiproliferative activity of imatinib mesylate.30,32,41 Third, the combination of different target-directed therapeutic agents such as the proteasome inhibitor bortezomib in conjunction with the cyclin-dependent kinase inhibitor flavopiridol or with SAHA has also been shown to effectively induce apoptosis in imatinib-resistant cells.42,43 As many of these strategies remain ineffective against the T315I mutant cells, this study is aimed at developing an alternative strategy to overcome imatinib mesylate resistance.
Despite reduced binding affinity, imatinib mesylate still displays differential residual activity against these mutations. However, its ability to activate apoptotic signaling in mutant cell lines diminishes. In light of the pivotal role in Akt in regulating apoptosis threshold, we hypothesize that concurrent inhibition of Akt would achieve a mechanistic synergy by sensitizing imatinib-resistant cells to the residual apoptotic efficacy of imatinib mesylate. To examine this premise, we evaluate the effect of OSU-03012, a celecoxib-derived PDK-1 inhibitor lacking COX-2 inhibitory activity, on imatinib mesylate resistance in 2 clinically relevant cell lines, Ba/F3p210E255K and Ba/F3p210T315I, compared with untransfected Ba/F3 and 32D cells. Despite low levels of phospho-Akt, both Ba/F3 and 32D cells were sensitive to the apoptosis-inducing effect of OSU-03012, which has also been observed in many types of cancer cells with normal phosphatase with tensin homology (PTEN) function.22 The effect of OSU-03012 on apoptosis in Ba/F3 and 32D might involve both Akt-dependent and -independent mechanisms. First, Akt, even not constitutively activated, still plays a role in the survival of these proliferating cells. Second, PDK-1 has non-Akt targets such as p70S6K that are also involved in cell survival and proliferation. Both mutant cell lines exhibited the same susceptibility to OSU-03012 as their wild-type counterpart Ba/F3p210E255K and Ba/F3p210T315I irrespective of the Bcr-Abl mutations. The lack of cross-resistance of OSU-03012 and imatinib mesylate underscores the functional relevance of targeting PDK-1/Akt signaling in imatinib mesylate-resistant mutant cells. It is especially noteworthy that OSU-03012 showed augmenting effects with imatinib mesylate on apoptosis in mutant imatinib mesylate-resistant cells at therapeutically attainable concentrations (≤5 μM), shifting the dose-response curves by more than 1 log unit. For example, the IC50 and IC80 values for imatinib mesylate in the presence of 5 μM OSU-03012 in Ba/F3p210T315I cells were 1 and 2.5 μM, respectively, vis-à-vis 30 and 65 μM for imatinib mesylate alone. This synergy is in sharp contrast to earlier reports that many antileukemic agents such as As2O3, decitabine, and SCH66336 could not synergize with imatinib mesylate in inhibiting the growth of Ba/F3p210T315I cells.3,22

Our data suggest that the ability of OSU-03012 to facilitate imatinib mesylate-mediated antiproliferative effects in these imatinib-resistant cells could be rationalized by the mechanistic synergy at the phospho-Akt level (ie, OSU-03012 was able to suppress Akt phosphorylation at low μM levels independent of Bcr-Abl mutations). As Akt contributes to enhanced survival of Bcr-Abl–expressing cells, the reduced apoptosis threshold renders imatinib mesylate-resistant cells sensitive to the residual antiproliferative activity of imatinib mesylate. Consequently, the molecular basis underlying this augmenting effect of OSU-03012 differs from that of other antileukemic agents such as As2O3 (Bcr-Abl expression),3,22 decitabine (DNA hypomethylation),30 SCH66336 (protein farnesylation),32 and flavopiridol (cyclin-dependent kinase).44 It is noteworthy that OSU-03012 is currently undergoing preclinical testing under the Rapid Access to Intervention Development (RAID) program at the National Cancer Institute. Our data indicate that oral administration of this agent in tumor-bearing nude mice even at 200 mg/kg for 1 month gave rise to no weight loss or apparent toxicity at necropsy (C.S.C., unpublished data, August 2003). Thus, this combination represents a viable strategy for clinical testing in imatinib-resistant CML.

References

Synergistic interactions between imatinib mesylate and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming imatinib mesylate resistance

Ping-Hui Tseng, Ho-Pi Lin, Jiuxiang Zhu, Kuen-Feng Chen, Erinn M. Hade, Donn C. Young, John C. Byrd, Michael Grever, Kara Johnson, Brian J. Druker and Ching-Shih Chen