Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins

George F. Widhopf II, Laura Z. Rassenti, Traci L. Toy, John G. Gribben, William G. Wierda, and Thomas J. Kipps

We examined the immunoglobulin (Ig) heavy chain variable region genes (V$_H$ genes) used by leukemia cells of 1220 unrelated patients with chronic lymphocytic leukemia (CLL). We found 1188 (97%) expressed Ig encoded by a single Ig V$_H$ subgroup, the most common of which was V$_H$3 (571 or 48.1%), followed by V$_H$1 (319 or 26.8%) and V$_H$4 (241 or 20.2%). Using allele-specific primers, we found 13.8% of all samples (n = 164) used one major V$_H$1-69 allele, designated 51p1, 163 of which were not somatically mutated. For these cases, there was marked restriction in the structure of the Ig third complementarity determining regions (CDR3s), which were encoded by a small number of unmutated D and J$_H$ gene segments. Strikingly, 15 of the 163 cases had virtually identical CDR3s encoded by the second reading frame of D3-16 and J$_H$3. Further analysis revealed that each of these 15 samples used the same unmutated Ig kappa light-chain gene, namely A27. These data reveal that approximately 1.3% (15/1220) of all patients had leukemia cells that expressed virtually identical Ig. This finding provides compelling evidence that the Ig expressed by CLL B cells are highly selected and not representative of the Ig expressed by naive B cells. (Blood. 2004;104:2499-2504)

Introduction

The mutational status of the immunoglobulin (Ig) genes expressed in B-cell chronic lymphocytic leukemia (CLL) can be used to segregate patients into 2 subsets that have significantly different tendencies for disease progression. Those patients with leukemia cells that express unmutated Ig heavy chain variable region genes (V$_H$ genes) have a greater tendency for disease progression and shorter survival than those who have leukemia cells that express Ig V$_H$ genes with less than 98% nucleic acid sequence homology with their germ-line counterparts. Generally, the Ig V$_H$ genes expressed by any leukemia cell population do not display significant intraclonal diversity or tendency to accumulate additional somatic mutations over time. As such, the leukemia cells that express mutated Ig genes apparently do not evolve from cases that originally expressed unmutated Ig genes. Because of this, the presence or absence of Ig somatic mutations was thought by some to reflect 2 subtypes of CLL, each with distinctive cytogenesis. The subtype that expressed unmutated Ig V$_H$ genes was considered to be derived from naive or pre–germinal center B cells, whereas the CLL cells expressing mutated receptors were thought likely to be derived from a post–germinal center or “memory-type” B cells.

However, molecular analyses of the Ig V$_H$ genes expressed by CLL B cells suggest that neither subtype is derived from a naive, nonselected B cell. CLL B cells express an Ig repertoire that appears more restricted than that of adult blood B cells. Several genes, such as the 51p1 allele of V$_H$1-69, are expressed at high frequency, are rarely mutated, and constitute a large proportion (e.g., \approx 20%) of the cases that lack Ig somatic mutation. In addition, prior studies found that 51p1-expressing CLL B cells preferentially use certain diversity (D) and J$_H$ gene segments with restricted reading frames (RFs), encoding relatively long third complementarity determining regions (CDR3s) with conserved amino acid motifs. The CDR3s of 51p1-expressing CLL B cells contrasted with those of the Ig heavy chains expressed by CLL B cells that used other Ig V$_H$1 genes or by nonneoplastic tonsillar or blood B cells that used 51p1. As the CDR3 is the most variable region of the heavy chain and is directly involved in antigen binding, these results suggest that CLL B cells that express unmutated Ig might have been selected by virtue of their capacity to react with an undefined, yet specific, antigen(s). As such, these leukemia cells are not likely to be derived from naive B cells.

To exclude the possibility that the noted restriction in 51p1 used by CLL reflected a small sample bias or a skewed collection of samples obtained at a single institution, we investigated the Ig V$_H$ gene used by CLL B cells of nonselected patients monitored by the CLL Research Consortium (CRC). In this large study, we confirm the high level of expression of 51p1 by the CLL B cells and extend these studies to report that a high proportion of patients expressed virtually identical Ig heavy and light chains. This study provides compelling evidence that the Ig expressed by CLL B cells are highly selected and not representative of the Ig used by naive B cells.

Patients, materials, and methods

Patient samples

Blood was collected from consenting patients who satisfied diagnostic and immunophenotypic criteria for B-cell CLL and who presented for evaluation at the referral centers of the CLL Research Consortium (CRC).
Institutional review board approval and informed consent were obtained for the procurement of the samples in all cases, in accordance with the Declaration of Helsinki. Peripheral blood mononuclear cells were isolated by density gradient centrifugation using Ficoll-Hypaque 1077 (Sigma, St Louis, MO), washed twice, and analyzed directly or suspended in fetal calf serum containing 10% dimethylsulfoxide (DMSO; Sigma) for storage in liquid nitrogen. All samples contained more than 90% CLL B cells as assessed by flow cytometric analyses.

Flow cytometry analyses

CLL B cells (5 × 10⁶) were stained with optimized amounts of monoclonal antibodies (mAbs) conjugated with fluorescein isothiocyanate, phycoerythrin, or allophycocyanin (BD PharMingen, La Jolla, CA) specific for human CD19, CD3, CD5, CD38, Igk, and Igλ, or with fluorochrome-conjugated isotype control antibodies of irrelevant specificity. Cells were examined by 4-color, multiparameter flow cytometry using a dual laser FACScalibur (Becton Dickinson, San Jose, CA). Data were analyzed using FlowJo analysis software (Treestar, San Carlos, CA). Viable lymphocytes were defined by exclusion of propidium iodide and light scatter characteristics.

VH and VL gene analyses

Total cellular RNA was isolated from 5 × 10⁶ CLL B cells using RNasey reagents (Qiagen, Valencia, CA), per the manufacturer’s instructions. First-strand cDNA was synthesized from one third of the total purified RNA using an oligo-dT primer and SuperScript II RT (Life Technologies, Grand Island, NY). The remaining RNA was removed with RNase H and the cDNA purified using QIAquik purification columns (Qiagen). The purified cDNA was poly-dG-tailed using deoxyguanosine triphosphate and terminal deoxynucleotase (Roche, Indianapolis, IN). The VH gene expressed by the CLL B cells was determined by reverse transcription–polymerase chain reaction (RT-PCR) enzyme-linked immunosorbent assay (ELISA) technique. The cDNA from each sample was amplified using VH or VL family-specific primers for the sense strand of the gene of interest and antisense Cc or Cc consensus primers. The PCR products were size selected by electrophoresis in 2% agarose containing 0.5% ethidium bromide (Sigma) and visualized with a UV transilluminator. The cDNA purified using an oligo-dT primer and Superscript II RT (Life Technologies, Grand Island, NY) was used to synthesize the first-strand cDNA with the manufacturer’s instructions. The cDNA was purified using QIAquik purification columns (Qiagen, Valencia, CA), per the manufacturer.

Table 1. Relative expression of Ig VH and VL gene subgroups

<table>
<thead>
<tr>
<th>VH subgroup</th>
<th>Associated light chain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa (%)</td>
</tr>
<tr>
<td>Total</td>
<td>1188 (100)</td>
</tr>
<tr>
<td>VH1</td>
<td>319 (27)</td>
</tr>
<tr>
<td>VH2</td>
<td>29 (2)</td>
</tr>
<tr>
<td>VH3</td>
<td>571 (48)</td>
</tr>
<tr>
<td>VH4</td>
<td>241 (20)</td>
</tr>
<tr>
<td>VH5</td>
<td>10 (11)</td>
</tr>
<tr>
<td>VH6</td>
<td>8 (0.7)</td>
</tr>
<tr>
<td>VH7</td>
<td>4 (0.3)</td>
</tr>
</tbody>
</table>

*The percent of the VH subgroup.

Results

We performed RT-PCR ELISA on 1220 CLL samples from unrelated patients to determine the expressed Ig VH gene subgroups. We found that 1188 (97%) of the CLL samples expressed Ig heavy chains (IgH) encoded by VH genes of a single VH family. This analysis also revealed that the most common VH subgroup used was VH3 (seen in 571 cases or 48.1% of the total), followed by VH1 (319 or 26.8%) and VH4 (241 or 20.2%) (Table 1). The VH2, VH5, VH6, and VH7 subgroups were used less frequently, accounting for 29 (2.4%), 16 (1.3%), 8 (0.7%), and 4 (0.3%) samples, respectively. In addition, we performed immunophenotypic analysis of all samples by flow cytometry. Of the samples, 64% (730 of 1138) and 36% (408 of 1138) expressed kappa and lambda light chains, respectively, reflecting the 3:2 ratio of kappa to lambda light chains noted for B cells of healthy adults.

We focused on the 319 CLL samples found to express the VH1 subgroup, in particular those that expressed IgH encoded by VH1-69. There are several alleles at the VH1-69 locus that can be grouped into 2 major alleles (eg, 51p1 versus 1263) based upon nonconservative differences in the second complementarity determining region (CDR2) that can be recognized by anti-idiotypic mAb, G6.13,21 We performed RT-PCR ELISA using allele-specific primers to detect CLL samples that expressed 51p1-like alleles of VH1-69. All samples typed as expressing 51p1-like alleles of VH1-69 also were typed as expressing VH1 genes of the VH1 subgroup. We found that 164 cases (13.8% of all samples and 51.4% of VH1-expressing CLL samples) used 51p1-like alleles of VH1-69 using this method. Immunophenotypic analysis of these samples by flow cytometry revealed that 72% (118 of 164) and 26.8% (44 of 164) of the samples expressed kappa and lambda light chains, respectively.

To analyze the mutational status and molecular characteristics of the CDR3, we sequenced all VH1 genes identified as VH1-69 by RT-PCR ELISA. All samples were found to have a single functional IgH rearrangement. Of the 164 patient samples, 163 expressed IgH encoded by unmutated 51p1-related alleles. Of the 5 51p1-related alleles, 4 differed only by single conservative nucleotide changes. Variants 1, 2, 5, and 11 therefore have identical coding regions and were present in 141 (86.5%) of 163 of the unmutated samples. Variant 7 differs from the other 4 alleles by a Gln to Lys substitution in FW3 and was present in 22 (13.5%) samples.

In addition to being predominantly expressed without somatic mutation, the rearrangements of the 51p1-like VH1-69 genes expressed by CLL cells were highly restricted (Figure 1A). The 2 major D gene families, D2 and D3, accounted for the vast majority of the D segments used. Of the D2 family, 4 D segments were used, namely D2-2, D2-8, D2-15, and D2-21, accounting for 25.2%, 25%, 5.5%, and 2.5% of all the VH1-69 rearrangements, respectively. Of the D3 family, 5 D segments were used, namely D3-3, D3-9, D3-10, D3-16, and D3-22, accounting for 24.5%, 3.1%, 8%, 12.9%, and 4.3% of all the VH1-69 rearrangements, respectively. In contrast, the VH1-69—expressing B cells of healthy adults
only seldom use the 3 most frequent D genes identified in this group, namely D2-2, D3-3, and D3-16. In addition, we noted that Jg6 was the most frequently used Jg gene segment (103 of 163, 63.1%), followed by Jg3, then Jg4 and Jg5 (Figure 1B). This is in contrast to the B cells of healthy adults, which most frequently use the Jg4 gene segment, including normal B cells that use the V\(\text{H}1-69\) gene. The restricted use of D and Jg genes leads to CDR3s with conserved molecular features. As noted in prior studies, the average length of the CDR3 for the V\(\text{H}1-69\)-expressing CLL cells (19.6 ± 3.0 codons) was significantly longer than that of most Ig gene rearrangements of normal blood B cells, including those that use 51p1-like V\(\text{H}1-69\) genes in young (14.6 ± 4.3 codons, n = 39) or aged (16.6 ± 3.4 codons, n = 38) adults (\(P < .001\)).

Furthermore, there was restricted use of certain reading frames of unmutated D gene segments, resulting in CDR3 that shared amino acid sequence motifs (Table 2). The motif DIVVVPA\(\text{A}\)\(\text{A}\)IMI was found in the CDR3 of 20 (74%) of the 27 V\(\text{H}1-69\)-encoded heavy chains that used the D2-2 gene segment and Jg6, resulting from restricted use of this D gene segment’s third reading frame. Of these 20 Ig heavy chains, 16 also had long CDR3s of 19 or 20 amino acids. Similarly, 15 (83%) of the 18 51p1-encoded heavy chains that used D3-3 and Jg6 shared the CDR3 motif GGYDFWSGY, owing to the restricted use of the second reading frame of D-3.

The most striking sequence homology, though, was noted for V\(\text{H}1-69\)-expressing CLL cell samples that used the D-3-16 gene segment along with Jg3. By cluster analysis of the amino acid (A) and nucleotide (B) sequences of the CDR3 of the fifteen 51p1-encoded heavy chains expressed by unrelated CLL patients, alignments of the amino acid (A) and nucleotide (B) sequences of the CDR3 of the fifteen 51p1-encoded heavy chains are shown, compared with CLL sample A (CLL-A). Dots indicate homology at that position. Listed on the left margin is the designation for each CDR3, and the sequences of the CDR3 of the IMI heavy chain and the germ-line sequences of the D-3-16 and Jg3 genes are included at the bottom for reference.

Table 2. Common CDR3 amino acid motifs found in 51p1-encoded heavy chains

<table>
<thead>
<tr>
<th>CDR3 amino acid sequence motif</th>
<th>D gene</th>
<th>RF</th>
<th>Jg gene</th>
<th>Sample no.</th>
<th>Associated light chain</th>
<th>Specific V(\text{H}) genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVVVPA(\text{A})(\text{A})IMI</td>
<td>D2-2</td>
<td>3</td>
<td>Jg6</td>
<td>20</td>
<td>Lambda (%)</td>
<td>Kappa (%)</td>
</tr>
<tr>
<td>YDFWSGY</td>
<td>D3-3</td>
<td>2</td>
<td>Jg3/4</td>
<td>6</td>
<td>4 (20)</td>
<td>16 (75)</td>
</tr>
<tr>
<td>GGYDFWSGY</td>
<td>D3-3</td>
<td>2</td>
<td>Jg6</td>
<td>15</td>
<td>10 (67)</td>
<td>5 (33)</td>
</tr>
<tr>
<td>TIFGVV</td>
<td>D3-3</td>
<td>3</td>
<td>Jg4/6</td>
<td>10</td>
<td>2 (20)</td>
<td>8 (80)</td>
</tr>
<tr>
<td>GGXYDY(I/V)WGSYRPNDAFDI</td>
<td>D3-16</td>
<td>2</td>
<td>Jg3</td>
<td>15</td>
<td>0 (0)</td>
<td>15 (100)</td>
</tr>
</tbody>
</table>

Underlined letters (Q) indicate the presence of that amino acid in more than 67% of the samples.

†The percent of the V\(\text{H}\)1 subgroup.

‡The percent of the V\(\text{H}\)2 subgroup.

ND indicates not determined.
gene. The others have various amino acids in the third position that are the result of exonuclease activity and nucleotide addition at the 5' end of the D gene, and account for the primary difference between the 15 heavy chains. N segments also encode 3 amino acids at the D-J junction, and encode the same 3 amino acids (Arg-Pro-Asn) for 13 of 15 CLL samples, and (Arg-Ser-Asn) for the other 2. The processing of the D segment by exonuclease activity for all samples is remarkably similar, as the last 2 codons encoded by D3-16 are removed, and each results in the Arg in position 12. The Pro in position 13 is encoded only by N segments, whereas the 2 samples with Ser likely use the thymidine from the D3-16 gene as the first nucleotide in this codon, and nontemplated nucleotides in the other 2. The Asn in position 14 of all rearrangements is likely encoded by a combination of N segment addition and the thymidine from the 5' end of the Jp3 gene. Although 15 of the 21 amino acids can be encoded by a codon with a thymidine in the third position, all but one have Asn. These Ig heavy chains were virtually identical to those expressed by one other CLL sample noted in our prior studies, designated SMI.24 This previously identified CLL sample also expressed a particular Vh, that frequently is expressed in CLL, namely A27, which encodes the cross-reactive idiotype (CRI) recognized by the mAb 17.109.25 We noted that each of the CLL samples identified in this study that expressed virtually the same Ig heavy chains also identified kappa light chains (Table 2). Because of this we isolated the kappa light chain cDNA from each for nucleic acid sequence analyses. This analysis revealed that each of the CLL samples expressed the same Vh gene, namely A27. This Vh gene also was the same one used by the prototype CLL IgM protein, SMI. All samples were derived from distinct genomic rearrangements (Figure 3B), and, similar to SMI, all A27 encoded Vh light chains did not have any Ig somatic mutations. The restriction of Jh genes was less than for the heavy chains, as A27 was rearranged 4 times each with J1 or J2 gene segments, 3 times each with J3 and J5, and once with J4. However, because these Jh gene segments encode highly homologous amino acid sequences, the CDR3 segments of the rearranged A27 light chains used by these CLL samples also were highly similar in both length and amino acid sequence composition (Figure 3). In contrast, only 13 (13%) of the other 102 samples that expressed unmutated 51p1-encoded heavy chains expressed A27-encoded light chains (Table 2). Instead, the other 15p1-encoded heavy chains that had common CDR3 motifs other than GG(Y)DY(I/V)WGYSR/PS/NDAFDI appeared to have restricted pairing with light chains encoded by Vh genes other than A27. For example, 10 (50%) of the 20 51p1-encoded Ig heavy chains with the CDR3 motif of DIVVPA/IM were paired with kappa light chains with variable regions encoded by the unmutated Vh,02 gene, a Vh gene of the Vh,I gene subgroup that is quite distinct from Vh,A27. Moreover, 10 (56%) of the 18 samples that express 51p1-encoded heavy chains with the CDR3 motif of GGYDFWS-GYY are paired with lambda light chains. As such, the skewed association of Vh,A27 with the 51p1-encoded heavy chains with the highly conserved CDR3 of GG(Y)DY(I/V)WGYSR/PS/NDAFDI is not a general property of all 51p1-encoded heavy chains.

Discussion

Previous studies have identified restriction in the Vh genes used in CLL, particularly those that express unmutated heavy chains.15,26,27 These studies have defined that not only is Ig Vh gene use in CLL not random, but that CLL cells that express unmutated Ig Vh genes preferentially use certain Ig Vh genes,11,28 whereas CLL B cells belonging to the mutated subset frequently express a different set of Ig Vh genes.29,29 However, Ig Vh gene use in CLL must be compared with Ig Vh gene use by normal B cells or the normal counterpart to the CLL B cell. It is clear that Vh gene use in normal B cells is also nonrandom. However, the frequent use of certain genes might vary between the 2 groups.

Distinction between normal B cells and CLL is made clearer when there is frequent expression of one Ig Vh coupled with critical evaluation of junctional diversity in CDR3. Our previous studies have shown that Vh1-69 is frequently expressed in CLL,11 and that 51p1-encoded heavy chains preferentially use certain D and Jh genes segments with restricted reading frames, encoding relatively long CDR3 regions with distinct amino acid motifs.12 These features are unique but not exclusive to CLL, as they are infrequently present in normal tonsillar and blood B cells of young14 and aged22,23 healthy adults. To exclude the possibility that the noted restriction reflected a small sample bias, we investigated the Ig Vh gene used by the CLL B cells of a larger cohort of nonselected patients monitored by the CLL Research Consortium. In this large cohort of CLL samples, not only do we find similar restricted expression of 51p1 as noted in previous reports, we found that approximately 1.3% of all cases expressed virtually identical Ig.

The expression of these conserved heavy chains is not a consequence of chance, as the frequency of coexpression of these 3 distinct heavy chain genes alone is 1 in 7,650 (1/51 × 1/25 × 1/6),

![Figure 3](Image)
representing the probability of using each particular gene relative to the total number of functional genes in each group. This probability is further diminished by similar consideration of 1 in 200 for rearrangement of a specific V<subREDENTIAL</sub> and J_h gene (1/40 × 1/5). Therefore, one would expect that only 1 of every 1 530 000 B cells would randomly express the heavy and light chains encoded by the same 5 genes. This estimate is also without regard to generation of junctional diversity, which would decrease the probability to less than 10^{−12}.

Expression of these Ig heavy chains also is not associated with aging, as similar 51p1-encoded heavy chains are not prevalent in a recent study of healthy aged individuals.22,23 Also, these samples are not a reflection of 51p1 expression in CLL, as neither D3–16 nor J_h3 is highly expressed in CLL,12 and these samples represent 15 of the 21 51p1-encoded heavy chains that use D3–16 and 15 of the 26 that use J_h3. It is also not a reflection of preferential rearrangement of certain genes, as D3–16 and J_h3 are not frequently expressed in the normal B-cell repertoire19,30,31 or in CLL overall. Rather it is likely a result of selection, as preferential rearrangement would not provide for the conservation of junctional diversity noted in these heavy chain rearrangements.

The highly restricted and virtually identical structure of the B-cell receptors (BCRs) expressed by this set of CLL B cells strongly suggests selection for a particular reactivity. As CLL B cells frequently express IgM antibodies that display reactivity to self-proteins,24,32,33 including several 51p1-encoded Ig expressed in CLL that are polyreactive,24,34–37 we and others have previously suggested that expression of Ig with restricted CDR3 structures may influence the development of CLL. As noted previously, the heavy and light chains presented here are virtually identical to those of SMI, a previously characterized CLL that expresses a self-antibody.38,39 As such, such polyreactive antibodies may in some way influence the development of CLL. As noted previously, the heavy and light chains frequently expressed in CLL suggest that Ig with restricted CDR3 structures may influence the fate and/or differentiation of B cells in lymphoid tissues. Evidence for this comes from transgenic mice that express the SMI IgM/k antibody.40 Transgenic expression of the SMI IgM/k induced mouse B cells to differentiate into nonnaive, memory-type B cells that were hyperresponsive to nonspecific T-cell help. SMI mice, but not control mice that express a human Ig in the absence of specific antigen, had increased numbers of human Ig transgene–expressing B1 and marginal zone (MZ) B cells. Such cells were found in the periarterior sheath, MZ, and interfollicular areas of the spleen that typically are populated by memory or antigen-experienced B cells. SMI B cells could secrete human IgM/k when provided with nonspecific T-cell help alone, further demonstrating that these cells are antigen experienced, rather than naïve B cells.

In this regard, it is noteworthy that microarray studies demonstrated that both subtypes of CLL share a common gene expression profile that is distinct from that of other B-cell lymphomas or normal blood B cells.51,52 This CLL gene expression profile appeared similar to that of MZ B cells of secondary lymphoid tissues. In addition, several genes found expressed in CLL B cells are typically up-regulated as a consequence of BCR ligation, suggesting that CLL B cells might be stimulated via the Ig receptor in vivo. Although expression of Ig such as SMI IgM/k might not in itself result in leukemia in transgenic mice, the continuous low-level stimulation afforded by expression of such self-reactive Ig receptors still appears to enhance B-cell turnover and/or survival,43 potentially increasing the risk for neoplastic transformation.

The restricted repertoire of the Ig expressed in CLL potentially could be exploited for development of idiotype-directed immune therapy. CLL cells of unrelated patients frequently express Ig with common CRI that can be recognized by mAbs.44,45 Studies were performed testing the biologic activity of such mAbs in the SM_{MI} transgenic mouse. Although the B cells expressing the SMI IgM/k transgenes expressed relatively low levels of surface human Ig, these transgene-expressing B cells still could be selectively deleted in vivo by treatment with mAbs specific for the CRI of the SM_{MI} IgM/k.46 Conceivably, anti-idiotypic mAbs could be used during early pathogenesis to target cells that express CRI of Ig associated with an increased risk for neoplastic transformation. In addition, vaccine strategies also could be developed to induce cellular immune responses against peptide epitopes of common motifs found within the CDR3 of Ig frequently expressed in CLL. Conceivably, batteries of mAb anti-CRI reagents and/or peptide vaccines could be assembled for immune therapy of a relatively large proportion of patients with this disease.

Acknowledgments

We thank the investigators who have contributed samples to the CRC Tissue Core, Andrew Greaves for management of the Tissue Core Management System, and Esther Avery for excellent technical assistance.

References

1. Damle RN, Wasi T, Fais F, et al. Ig V gene muta-

tion status and CD38 expression as novel prog-

2. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are as-

1854.

3. Hamblin TJ, Orchard JA, Ilbottson RE, et al. CD38 expression and immunoglobulin variable re-

gion mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expres-

5. Lin K, Sherrington PD, Dennis M, Matrai Z, Caw-

ley JC, Pettitt AR. Relationship between p53 dys-

function, CD38 expression, and IgV(H) mutation
Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins

George F. Widhopf II, Laura Z. Rassenti, Traci L. Toy, John G. Gribben, William G. Wierda and Thomas J. Kipps