Expression of Rgmc, the murine ortholog of hemojuvelin gene, is modulated by development and inflammation, but not by iron status or erythropoietin

Jan Krijt, Martin Vokurka, Ko-Tung Chang, and Emanuel Neˇcas

Mutations of hepcidin (HAMP) and hemojuvelin (HJV) genes have been recently demonstrated to result in juvenile hemochromatosis. Expression of HAMP is regulated by iron status or infection, whereas regulation of HJV is yet unknown. Using quantitative real-time polymerase chain reaction, we compared expression of Hamp and Rgmc (the murine ortholog of HJV) in livers of mice treated with iron, erythropoietin, or lipopolysaccharide (LPS), as well as during fetal and postnatal development. Iron overload increased Hamp expression without effect on Rgmc mRNA. Erythropoietin decreased Hamp mRNA, but Rgmc expression was unchanged. Hamp mRNA level decreased after birth by 4 orders of magnitude, without significant changes in Rgmc expression. Administration of LPS elevated Hamp mRNA levels, while markedly decreasing hepatic Rgmc mRNA levels (to ~5% after 6 hours). The responses of Hamp and Rgmc were quite different and suggested that human HJV expression could be modulated by inflammation.

(Blood. 2004;104:4308-4310)
Results and discussion

Real-time PCR allowed detection of Hamp and Rgmc mRNAs in adult as well as in fetal liver samples, with the amount of Hamp mRNA exceeding Rgmc mRNA in adult liver by more than 1 order of magnitude. Tissue-specific expression of Rgmc agreed with published data for human HVJ (results not shown).

Hepcidin expression increases during iron overload and decreases following erythropoietin administration. Subcutaneous injection of a single dose of iron (600 mg/kg) increased the amount of Hamp mRNA more than 4-fold when measured 1 week or 3 weeks after treatment; however, the amount of hepatic Rgmc mRNA was not significantly changed (Table 1). Administration of erythropoietin for 4 days decreased Hamp mRNA levels to less than 5% of control values, again without a statistically significant effect on hepatic Rgmc mRNA levels. These results indicate that, in contrast to Hamp mRNA, Rgmc mRNA content is not influenced by iron overload or increased erythropoiesis.

It has been previously shown that HVJ is expressed in fetal liver. Because Hamp expression displays significant changes during both prenatal and postnatal periods, we examined whether the expression pattern of Hamp and Rgmc would be similar. Although both Hamp and Rgmc mRNAs increased during embryonic liver development, a striking difference was noted in the postnatal expression of the 2 genes (Figure 1). Hamp mRNA dropped by 4 orders of magnitude after birth and remained low until weaning, whereas Rgmc mRNA levels decreased only to about 30% at postnatal day 3 and reached adult levels at day 8. These results show that the 2 genes are regulated differently during the postnatal period.

In addition to iron homeostasis, expression of hepcidin is also regulated by inflammatory cytokines. Hepcidin was originally described as an antimicrobial peptide, and the link between hepcidin and the immune response has been further strengthened by the observations that urinary hepcidin levels rise by 2 orders of magnitude in patients with infections. Human hepcidin has therefore been characterized as an acute-phase protein, whose induction is probably responsible for the changes in iron homeostasis during anemia of inflammation. Accordingly, an increase of hepatic Hamp mRNA has been documented in experimental animals treated with LPS. As shown in Table 1, a single injection of LPS slightly increased hepatic Hamp mRNA levels, measured 6 hours after LPS administration, while decreasing hepatic Rgmc mRNA levels by more than 1 order of magnitude. Thus, the response of Hamp and Rgmc to inflammatory stimuli appears to be fundamentally different.

The link between iron metabolism and inflammation has been well established, with expression of many of the proteins involved in iron metabolism responding to infection or LPS treatment. LPS treatment decreases plasma iron concentrations and generally down-regulates iron export from the cells. In this respect, it is interesting to note that the response of Rgmc to LPS resembles the response of the Slc40a1 gene, which encodes the iron exporter ferroportin. Both hepatic Rgmc and Slc40a1 mRNAs show a similar decrease following administration of LPS to mice, with only slight changes at 90 minutes and substantial down-regulation 6 hours after LPS administration.

In conclusion, this study shows that, despite the postulated functional link between hepcidin and hemojuelin, murine Hamp and Rgmc genes respond differently to changes in iron status or inflammation. Although the results are based on mRNA quantification only, and as such do not reflect possible posttranscriptional regulation, they nevertheless indicate that whereas Hamp mRNA sensitively reacts to iron overload or increased erythropoiesis, hepatic Rgmc mRNA content is not significantly affected. In addition, hepatic Hamp and Rgmc mRNA levels respond in an opposite manner to bacterial LPS challenge. The decrease of hepatic Rgmc mRNA level following LPS treatment suggests that human HVJ expression could be down-regulated during inflammation.

Acknowledgments

The technical assistance of Dana Duricová and Lydie Tauchenová is gratefully acknowledged.

References

4. Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and...
Expression of \textit{Rgmc}, the murine ortholog of hemojuvelin gene, is modulated by development and inflammation, but not by iron status or erythropoietin

Jan Krijt, Martin Vokurka, Ko-Tung Chang and Emanuel Necas