Elevated serum-soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma

John E. Janik, John C. Morris, Stefania Pittaluga, Kristin McDonald, Mark Raaff, Elaine S. Jaffe, Nicole Grant, Martin Gutierrez, Thomas A. Waldmann, and Wyndham H. Wilson

Levels of serum soluble interleukin 2 receptor (sIL-2R) provide a reliable marker of disease activity in patients with hairy cell leukemia and adult T-cell leukemia/lymphoma. The malignant cells in patients with anaplastic large cell lymphoma (ALCL) express CD30 and are usually positive for expression of CD25. We measured serum sIL-2R and soluble CD30 (sCD30) levels in patients with ALCL treated with EPOCH (etoposide, prednisone, Oncovin, Cytoxan, hydroxydaunorubicin) infusion chemotherapy. Serum sCD30 levels were elevated and decreased in response to therapy as previously reported. Serum sIL-2R levels were elevated in 7 of 9 patients with ALCL and decreased in response to treatment. Baseline serum sIL-2R levels varied but correlated well with serum sCD30 levels ($r = 0.97$). Patients positive for the anaplastic lymphoma kinase (ALK) gene showed elevated sIL-2R levels, whereas those negative for ALK had normal serum sIL-2R levels and their tumors lacked CD25 expression. Serum sIL-2R levels were elevated in both patients with recurrent disease. (Blood. 2004;104:3355-3357)
pressure cooker containing 1.5 L 10 mM citrate buffer (pH, 6.0) containing 0.1% Tween 20 and microwaved (Model R4A80; Sharp Electronics, Rahwah, NJ) for 40 minutes at 700 W. Antigens were localized using an avidin-biotin-peroxidase method with 3,3’-diaminobenzidine as a chromogen and performed using an automated immunostainer (Ventana Medical Systems, Tucson, AZ). Primary antibody incubation was performed overnight with antibodies to CD25 (1:200), CD30 (1:80), and ALK-1 (1:160). Positive and negative controls were run with all cases and stained appropriately.

Results and discussion

The characteristics of the patients are shown in Table 1. We measured baseline serum sCD30 (normal level, < 18 U/mL) and that for sIL-2R less than 3600 pg/mL. CR indicates complete response; ND, not done; PD, progressive disease.

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age, y</th>
<th>Sex</th>
<th>Stage</th>
<th>Response</th>
<th>CD30*</th>
<th>ALK-1*</th>
<th>CD25*</th>
<th>sCD30 level, U/mL</th>
<th>sIL-2R level, pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>M</td>
<td>IVA</td>
<td>CR</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>217</td>
<td>517</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>M</td>
<td>IIIA</td>
<td>CR</td>
<td>Positive</td>
<td>ND</td>
<td>ND</td>
<td>534</td>
<td>13 918</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>M</td>
<td>IVB</td>
<td>CR</td>
<td>Positive</td>
<td>Positive*</td>
<td>ND</td>
<td>34 065</td>
<td>470 575</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>M</td>
<td>IIA</td>
<td>CR†</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>1 155</td>
<td>8 313†</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>M</td>
<td>IIB</td>
<td>CR</td>
<td>Positive</td>
<td>Positive*</td>
<td>ND</td>
<td>508</td>
<td>6 328</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>F</td>
<td>IIIA</td>
<td>CR</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>3 971</td>
<td>39 297</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>M</td>
<td>IV</td>
<td>CR</td>
<td>Positive</td>
<td>Positive</td>
<td>ND</td>
<td>21 480</td>
<td>191 483</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>F</td>
<td>IV</td>
<td>PD</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>ND</td>
<td>18 900§</td>
</tr>
<tr>
<td>9</td>
<td>68</td>
<td>F</td>
<td>II</td>
<td>CR</td>
<td>Positive</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>M</td>
<td>IV</td>
<td>CR</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>488</td>
<td>2 183</td>
</tr>
</tbody>
</table>

Normal value for sCD30 is less than 18 U/mL and that for sIL-2R less than 3600 pg/mL. CR indicates complete response; ND, not done; PD, progressive disease.

*Cytoplasmic ALK-1 staining; otherwise both cytoplasmic and nuclear staining.

†Patient 4 experienced a relapse, at which point his sIL-2R level was measured at 95 661 pg/mL.

§Sample was obtained at the start of the second cycle.

Results and discussion

The characteristics of the patients are shown in Table 1. We measured baseline serum sCD30 (normal level, < 18 U/mL) and that for sIL-2R (normal level, < 3600 pg/mL) levels in patients with ALCL treated with EPOCH infusional chemotherapy. The baseline serum sIL-2R levels were elevated in 7 of 9 patients (median, 18 900 pg/mL; range 6328-470 575 mg/mL) and correlated with elevations in serum sCD30 levels (median, 845 U/mL; range, 217-34 065 U/mL). The correlation between the serum levels of sCD30 and sIL-2R is shown in Figure 1B (r = 0.97). There was a trend toward higher levels of sIL-2R in patients with extensive tumor burden, particularly those with bone marrow involvement. Both patients with ALK+ tumors, whose diagnosis was based on morphology and strong uniform CD30 staining, had normal serum sIL-2R levels although sCD30 levels were elevated. In contrast, all of the ALK+ patients tested had elevated sIL-2R levels. The malignant cells from these ALK+ patients were negative for CD25 by immunohistochemistry consistent with the serum findings.

Patients with elevated pretreatment serum sIL-2R levels showed a significant reduction in serum sIL-2R levels (median, 1141...
pg/mL) at the completion of treatment from a median pretreatment value of 18,900 pg/mL. The time course of the fall in serum sIL-2R levels in one patient is shown in Figure 1C, and other patients showed similar kinetics with normalization of sIL-2R levels by the start of the third cycle of treatment. Similarly, serum sCD30 levels fell following treatment (median, 32 U/mL). Two patients in this group had a relapse; elevated serum sIL-2R levels were detected at the time of relapse.

CD30 belongs to the tumor necrosis factor (TNF) receptor superfamily whose members are involved in signal transduction events that can mediate apoptosis or proliferation. Antibodies directed at the ligand-binding site of CD30, functioning in a fashion similar to CD30 ligand, can transduce signals that mediate apoptosis in the neoplastic cells of patients with ALCL. The murine monoclonal antibodies HeFi-1 and M44, directed to the ligand-binding site of CD30, show antitumor activity in mouse models. These results suggest that reagents that bind the ligand-binding site of CD30 may be effective in patients with ALCL and clinical trials testing these agents are underway. The availability of alternative markers would be useful because these antibodies invalidate sCD30 as a marker of disease activity.

The clinical outcome in this group of patients is similar to that reported in a previous series. One patient failed to respond to treatment with EPOCH chemotherapy and 2 patients had relapses (18 months and 8 years) after the initial course of EPOCH chemotherapy. The patient who progressed during therapy with EPOCH responded to treatment with the combination of dacarbazine, the humanized monoclonal antibody directed at CD25, and EPOCH chemotherapy and underwent autologous transplantation but subsequently progressed. The other patients remain disease free after treatment with this combination; one underwent autologous stem cell transplantation.

In conclusion, high levels of sIL-2R were seen in all patients with ALK+ ALCL at diagnosis and these levels normalized with effective therapy. Serum sIL-2R levels increased at relapse. Lack of expression of CD25 on the malignant cells in ALK+ tumors explains the low serum sIL-2R levels in these 2 patients but would be anticipated to be elevated in ALK+ cases that express CD25. Larger series of patients should be evaluated for these parameters to extend these results. Serum sIL-2R levels will provide a sensitive measure of disease response in patients treated with antibodies to CD30 that would prevent measurement of serum sCD30 levels.

Acknowledgment

This article does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. government.

References

26. For personal use only.on July 16, 2017. By guest. From www.bloodjournal.org by guest on July 16, 2017. For personal use only.
Elevated serum-soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma

John E. Janik, John C. Morris, Stefania Pittaluga, Kristin McDonald, Mark Raffeld, Elaine S. Jaffe, Nicole Grant, Martin Gutierrez, Thomas A. Waldmann and Wyndham H. Wilson