A plausible mechanism to explain thrombotic risk differences associated with the use of second- and third-generation oral contraceptives (OCs), particularly in carriers of factor VLeiden, is still lacking. In a double-blind trial, 51 women without and 35 women with factor VLeiden were randomized to either a second- (30 μg ethinylestradiol/150 μg levonorgestrel) or third- (30 μg ethinylestradiol/150 μg desogestrel) generation OC. After 2 cycles of use and a wash-out of 2 cycles, the participants continued with the corresponding progestagen-only preparation. Hemostatic variables that probe the activity of the anticoagulant protein C system were determined. Compared with levonorgestrel, desogestrel-containing OCs significantly decreased protein S and increased activated protein C (APC) resistance in both groups. OCs with desogestrel had the most pronounced effects in carriers of factor VLeiden. Progestagen-only preparations caused changes of anticoagulant parameters opposite to those of combined OCs, which in a number of cases were more pronounced with levonorgestrel. Our data show that progestagens in combined OCs counteract the thrombotic effect of the estrogen component. The higher thrombotic risk associated with third-generation OCs compared with second-generation OCs may be explained by the fact that desogestrel appeared less antithrombotic than levonorgestrel, especially in women with factor VLeiden.

© 2004 by The American Society of Hematology

A plausible biologic mechanism for the thrombotic effects of second- and third-generation oral contraceptives is still lacking. Rosing et al. reported that oral contraceptive use leads to acquired APC resistance. Women using third-generation oral contraceptives were more resistant to the anticoagulant action of APC than users of second-generation oral contraceptives. Besides that, they reported that the effects of oral contraceptives and factor VLeiden on the APC sensitivity ratio (a hemostatic variable that quantifies the efficacy with which APC down-regulates thrombin generation in plasma; APC-sr) were additive. The APC resistance test used in these studies has since then been clinically validated, lending support to the proposal that the more pronounced acquired APC resistance observed in users of third-generation OCs may explain why they are exposed to a higher thrombotic risk than second-generation OC users.

A recent cross-over study indicated that second- and third-generation oral contraceptives not only cause differences in acquired APC resistance, but also have different effects on a large number of other procoagulant, anticoagulant, and fibrinolytic parameters. Particularly, the differential changes of the proteins involved in the protein C system may contribute to the thrombotic effects of oral contraceptives. The protein C system, which comprises the plasma proteins protein C and protein S, down-regulates in vivo blood coagulation via proteolytic inactivation of
coagulation factor Va and VIIIa. Protein S, which acts as cofactor of APC, also exhibits anticoagulant activity independent of APC by directly inhibiting thrombin formation. The anticoagulant activity of protein S is modulated by C4b-binding protein, which binds some 60% of plasma protein S. The physiologic importance of the protein C system is illustrated by the fact that defects in this pathway are associated with an increased risk of venous thromboembolism. The thrombotic risk of women with hereditary defects in the protein C pathway is enhanced by oral contraceptive use.

For a long time, the increased thrombotic risk associated with oral contraceptive use was attributed to the estrogen component. Because low-dose second- and third-generation oral contraceptives contain the same estrogen dose, the differences may reflect a progestagen-specific effect. Although it has been proposed that progestagens have estrogen-like effects, there are as yet no data on the influence of levonorgestrel or desogestrel in the absence of the estrogen component on the protein C pathway.

To gain more insight in the biologic basis of an enhanced risk of venous thrombosis in oral contraceptive users, particularly in carriers of factor V Leiden, we performed a double-blind randomized trial in which we determined the effects of second- and third-generation progestagens, alone or in combination with estrogens, on the protein C pathway in the absence or presence of the factor V Leiden mutation.

Patients, materials, and methods
Study design and participants
Figure 1 shows the flow of the participants during the study. In 1998, 1083 female students and employees of Utrecht University aged 18 to 40 years were screened for the presence of the factor V Leiden mutation. Of the women, 60 (5.5%) were heterozygous carriers of the factor V Leiden mutation. These women and 111 women without factor V Leiden were approached for the trial; 36 women with and 51 women without V Leiden agreed to participate and were tested whether or not they met the exclusion criteria. Exclusion criteria included the following: a history of any malignant disorder; cardiovascular, cerebrovascular, hepatic or renal diseases; venous thrombosis; epilepsy or classical migraine; vaginal bleeding of unknown etiology; pregnancy; rheumatoid arthritis; diabetes mellitus; psychiatric disorders; alcohol abuse or drug abuse within the last 12 months; heavy smoking; excessive obesity; chronic infectious diseases; and any other serious disease. Moreover, volunteers with a contraindication to estrogens and/or progestagens were excluded. One woman with V Leiden was excluded because of a psychiatric disorder. From the women without factor V Leiden no one met the exclusion criteria.

One participant was excluded from phase 2 because the wrong medication was supplied. Another woman withdrew consent in phase 2 because of side effects of the progestagen-only pill (symptoms of depression). Both were factor V Leiden-negative. The trial started in January 1999 and ended in October 1999.

Figure 2 illustrates the design of the trial. Women with and without factor V Leiden were randomly assigned to 1 of 2 different combination pills containing either 30/625 g ethinylestradiol and 150/625 g levonorgestrel or 30/625 g ethinylestradiol and 150/625 g desogestrel. These formulations are identical to those commercially marketed. The oral contraceptives were

Figure 1. Flow diagram of the participants.

Figure 2. Trial profile. *Desogestrel-containing OCs, 30 µg ethinylestradiol + 150 µg desogestrel; levonorgestrel-containing OCs, 30 µg ethinylestradiol + 150 µg levonorgestrel; desogestrel only, 150 µg desogestrel; and levonorgestrel only, 150 µg levonorgestrel. X indicates blood sampling. → indicates comparisons described in the tables. Comparisons referring to Tables 2-3 are also made for women with the factor V Leiden mutation.
used for a period of 2 menstruation cycles (phase 1). After a wash-out of 2 menstrual periods, the participants were treated with a corresponding progestagen-only preparation containing either 150 μg levonorgestrel or 150 μg desogestrel. These progestagens were used for a period of 2 menstruation cycles without a stop week to provide full contraceptive efficacy (phase 2). The study medication was labeled in blocks of 10 according to a randomization list generated by the medication manufacturer. Participants were enrolled and assigned to their groups by the investigators. Participants, those administering the intervention, and those assessing the outcomes were not aware of group assignment. There were 2 blood samples taken at the end of phase 1 (days 47 ± 2 and 49 ± 2), at the end of the wash-out period (days 101 ± 2 and 105 ± 2), and at the end of phase 2 (days 152 ± 2 and 154 ± 2). We used duplicate sampling to reduce random measurement error. For reasons of safety, ultrasound examination of the veins of both legs was performed before the start of the study, after the wash-out period, and at the end of phase 2, to exclude venous thrombosis.

A power calculation showed that if 25 women were allocated in each treatment group, assuming an APC-sr of 380 nM/minute ± 50 in healthy individuals, a differences in APC-sr of 40 nM/minute or more could be detected (α = 0.05; β = 0.20). This difference is enough to achieve statistical significance in the APC-sr calculation. With this sample size, we also expected to be able to demonstrate differences in the other hemostatic variables.

Before start of the study, all selected women were informed about the aims and potential risks of the study. All participants gave written informed consent. The study was approved by the Ethics Committee of the University Medical Center Utrecht.

Laboratory methods

All blood samples were drawn in the morning after an overnight abstinence from intake of food, caffeine, alcohol, or nicotine. Cell-free, citrated plasma was prepared and centrifuged at −80°C. Anticoagulant parameters were determined after all participants had completed the treatment regimen and were done in duplicate.

All commercially available assays were carried out according to the manufacturer’s instructions. Protein C was determined using the Coamatic protein C activity kit from Chromogenix (Möln达尔, Sweden). Total protein S antigen was assayed by an enzyme-linked immunosorbent assay (ELISA) using antibodies from DAKO (Glostrup, Denmark). Free protein S was measured by precipitating the C4b-binding protein-bound fraction with polyethylene glycol 8000 and measuring the concentration of free protein S in the supernatant. C4b-binding protein antigen levels were determined by enzyme-linked immunosorbent assay using a combination of monoclonal antibodies against C4b-binding protein (8C11 and horseradish peroxidase–labeled 9H10). The APC-independent anticoagulant activity of protein S (PSapCind) was determined as described by van Wijnen et al with 2 modifications. To avoid contamination with endogenous phospholipids, all plasma samples were centrifuged for 10 minutes at 13 000 g. Antagonist levels of protein C activity were determined in the supernatant. C4b-binding protein antigen levels were determined by precipitation of the C4b-binding protein-bound fraction with an antibody against C4b-binding protein (APC–C inhibitor (PCI) were determined by ELISA using a monoclonal antibody diluted 100-fold was used to initiate coagulation. Antigen levels of protein S were measured by precipitating the C4b-binding protein-bound fraction with an antibody against C4b-binding protein (APC–C inhibitor (PCI) were determined by ELISA using a monoclonal antibody against PCI (API-93) as capturing antibody and rabbit polyclonal anti-PCI

Statistical analysis

To reduce random measurement error, the results of the 2 visits at the end of phase 1, the wash-out period, and phase 2 were averaged. If only one sample was available, the values obtained for that sample were used in the analysis.

According to the design of the trial (Figure 1), 3 comparisons were made in the data analysis and represented in the corresponding tables. To assess the effect of progestagens in combined oral contraceptives, mean differences in anticoagulant parameters between the 2 treatment groups relative to values when no oral contraceptives were used were tested with unpaired t tests for noncarriers and carriers of factor VLeiden separately.

The effect of combined oral contraceptives (progestagens plus estrogen) versus progestagen-only preparations was calculated by testing differences in means between phase 1 and phase 2 using paired t tests. Again, these analyses were performed separately for noncarriers and carriers of factor VLeiden.

Differential effects of a hormone preparation between women with and without the factor VLeiden mutation were assessed from the mean change in anticoagulant parameters in the period of oral contraceptive use relative to no use using unpaired t tests.

For all estimates 95% confidence intervals were calculated. In addition to the parametric t tests we also performed nonparametric tests, which yielded similar results to the parametric ones.

Results

Characteristics of the volunteers participating in the study

No clinically relevant differences in general characteristics were present between the study groups (Table 1). The values of the anticoagulant parameters determined at the various stages in the trial are summarized in Table 2. During the study none of the volunteers showed clinical signs or symptoms of venous thromboembolism or abnormalities on ultrasound examination of the leg veins.

Effect of combined oral contraceptives

Women without factor VLeiden who used desogestrel-containing oral contraceptives became significantly more resistant to APC (as indicated by the increase of the APC-sr) than users of levonorgestrel-containing oral contraceptives (mean difference in change: 0.38; 95% CI, 0.08 to 0.67) (Table 2; Figure 3). In noncarriers of factor

<table>
<thead>
<tr>
<th>Table 1. Baseline characteristics according to factor VLeiden and type of oral contraceptive (OC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Levonorgestrel-containing</td>
</tr>
<tr>
<td>OC, n = 24</td>
</tr>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>Body weight, kg</td>
</tr>
<tr>
<td>Height, cm</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
</tr>
<tr>
<td>Previous OC use</td>
</tr>
<tr>
<td>Second generation</td>
</tr>
<tr>
<td>Third generation</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

Values are means ± SD or numbers with percentage in parentheses. BMI indicates body mass index.
V_{Leiden} - the use of levonorgestrel- and desogestrel-containing oral contraceptives also caused significant differential changes of total protein S (−9.1; 95% CI, −13.4 to −4.7), free protein S (−9.2; 95% CI, −12.0 to −6.4), and protein S_{APCind} (−0.08; 95% CI, −0.13 to −0.02). No differential changes were observed for protein C, C4b-binding protein, and protein C inhibitor.

In carriers of factor V_{Leiden} - the use of desogestrel- and levonorgestrel-containing oral contraceptives had significant differential effects on all anticoagulant parameters, except for protein C (Table 2; Figure 4A).

Effect of progestagen-only preparations

The changes observed in noncarriers of factor V_{Leiden} were significantly less pronounced on desogestrel than on levonorgestrel for the increase of free protein S (−4.0; 95% CI, −6.4 to −1.7) and PS_{APCind} (−0.13; 95% CI, −0.20 to −0.06) and the decrease in C4b-binding protein (6.0; 95% CI, 0.03-12.0) (Table 2; Figure 4B). In carriers of factor V_{Leiden} - the only significant differential effect between levonorgestrel and desogestrel was observed for PS_{APCind} (−0.09; 95% CI, −0.14 to −0.03).

The effects of the combination of estrogens and progestagens versus progestagen-only were estimated from the difference between the anticoagulant parameters in phase 1 and phase 2 (see Supplemental Table S1 on the Blood website; click on the “Data Set” link at the top of the online article). Except for free protein S...
 PCI, protein C inhibitor; and APC-sr, activated protein C sensitivity ratio.

Statistically significantly more pronounced decrease was found in noncarriers of factor V Leiden, which was particularly more pronounced in the women using desogestrel-containing oral contraceptives. This increase of free protein S on combined pills with levonorgestrel is explained by the fact that on this contraceptive pill type and presence of the factor V Leiden mutation.

Comparison of women with and without the factor V Leiden mutation

During the use of levonorgestrel-containing oral contraceptives a significantly more pronounced decrease was found in noncarriers than in carriers for C4b-binding protein and PS APCind (Supplemental Table S2). In contrast, the changes observed during the use of desogestrel-containing oral contraceptives were more pronounced in carriers than in noncarriers of factor V Leiden, which was statistically significant for the increase in the APC-sr (Figure 3) and the decrease in the plasma level of C4b-binding protein.

Discussion

Oral contraceptive use has repeatedly been associated with an increased risk of venous thrombosis. Particularly, the differential changes of the proteins involved in the protein C system may contribute to the thrombotic effects of oral contraceptives. In the present study, we found that third-generation oral contraceptives have a stronger effect on anticoagulant parameters than second-generation preparations. These effects were not found with the progestagen components of these pills only. On the contrary, the effects of progestagen-only preparations were in general more pronounced with levonorgestrel compared with desogestrel. Our findings suggest that, compared with levonorgestrel, desogestrel is less effective in countering the thrombotic effects induced by the estrogen component in combined oral contraceptives.

Despite the small number of women with factor V Leiden, which may have led to less precise estimates, we showed that earlier reported changes in anticoagulant parameters induced by oral contraceptives in healthy women also occurred in women with factor V Leiden. In carriers as well as in noncarriers of the factor V Leiden mutation both oral contraceptives induced APC resistance, increased the plasma levels of protein C and protein C inhibitor, and decreased the APC-independent anticoagulant activity of protein S and the plasma levels of total protein S and C4b-binding protein. In both study populations, free protein S increased on levonorgestrel- and decreased on desogestrel-containing oral contraceptives. This increase of free protein S on combined pills with levonorgestrel is explained by the fact that on this contraceptive pill type and presence of the factor V Leiden mutation.

Since hereditary defects of the protein C pathway are associated with an increased risk of venous thromboembolism, the differential effects of levonorgestrel- and desogestrel-containing oral contraceptives particularly on the plasma levels of protein S and on the degree of acquired APC resistance may well explain the differences in thrombotic risk associated with these preparations. Although the effects of third-generation OCs on the plasma levels of total and free protein S is relatively small, it should be emphasized that these concern mean changes and that in some individuals the changes are larger than the mean. Thus, it is possible that in a woman with a low protein S at baseline, a change in protein S larger than the mean may further disturb the hemostatic balance and increase the thrombotic risk.

With respect to the clinical relevance of acquired APC resistance, it was recently demonstrated that APC-sr determined with the APC resistance test used in this study predicts for venous thrombosis, in men and in women both in the absence and presence of the factor V Leiden mutation. This means that acquired APC resistance may well explain the occurrence of venous thrombosis and different thrombotic risks in OC users. Moreover, the pronounced increase in APC resistance in women with factor V Leiden who use desogestrel-containing oral contraceptives may account for the reported elevated risk of venous thrombosis in carriers of this mutation taking third-generation oral contraceptives.

To determine to what extent the progestagens levonorgestrel and desogestrel are responsible for the changes of anticoagulant parameters induced by combined oral contraceptives, we also investigated the effect of progestagen-only pills on the protein C pathway. Some years ago, Egberg et al studied 2 long-term contraceptive implants (containing the biologically active metabolite of desogestrel or levonorgestrel) with respect to hemostatic variables. They found that both implants had similar small effects on hemostasis. Winkler et al compared 2 progestagen-only pills containing either 30 μg levonorgestrel or 75 μg desogestrel. They reported increased protein S levels for desogestrel compared with levonorgestrel. However, the doses of progestagen used in these pills differed from those normally used in oral contraceptives. In
our study we compared progestagen-only preparations that con-
tained the same dose of progestagen as present in oral contra-
ceptives (150 μg levonorgestrel or desogestrel). Almost all effects of
combined oral contraceptives on anticoagulant parameters disap-
appeared or even went in an opposite direction when the participants
used progestagen-only preparations. Our observations are sup-
ported by reports indicating that the changes of several other
hemostatic parameters on progestagen-only pills and implants are
the inverse of those induced by combined oral contraceptives, which
may indicate a net antithrombotic effect. Progestagen-only pills may thus be a safer method of contraception. However, during the
study many women complained about irregular bleedings when these
preparations were used (65% compared with 15% during the
use of combined oral contraceptives).

The present study may provide an explanation for the observa-
tion that combined oral contraceptives with desogestrel cause more
marked changes of the anticoagulant protein C system than
levonorgestrel-containing oral contraceptives. We assume that
estrogens such as ethinyleoestradiol cause changes of anticoagulant
parameters that are in the same direction, but more profound than
observed with combined oral contraceptives. Due to their andro-
genic properties, progestagens induce changes in the anticoagulant
system that are opposite to those of estrogen and that, due to the
higher androgenicity, are more pronounced with levonorgestrel
than with desogestrel. Hence, we propose that combined oral
contraceptives with desogestrel induce more profound changes of
the anticoagulant system than levonorgestrel-containing oral contra-
ceptives because the effects of ethinyleoestradiol on anticoagulant
parameters are less well compensated by desogestrel than by
levonorgestrel. This view is supported by the observation that APC
resistance correlates inversely with the dose of levonorgestrel
present in 5 different combined oral contraceptives, suggesting
that high concentrations of levonorgestrel counteract the increase in
APC resistance.

In conclusion, our findings indicate that desogestrel-containing
oral contraceptives have a more pronounced effect on the anticoag-
ulant protein C system than levonorgestrel-containing oral contra-
ceptives, especially in women with factor V_Leiden. Particularly the
decrease in protein S and the profoundly increased resistance to
APC might contribute to the elevated risk of venous thrombosis in
carriers of factor V_Leiden who use third-generation oral contracep-
tives. The differential effects of second- and third-generation oral
contraceptives on the anticoagulant pathway can at least be
partially explained by the observation that levonorgestrel is more
effective than desogestrel in counteracting the thrombotic effect of
ethinyleoestradiol.

Acknowledgments
We thank all participants who took part in this study. We are
indebted to Esther van Lunteren for her help in the execution of this
study and to Winnie Tekelenburg and Stella Thomassen for
laboratory analysis.

References
1. Inman WH, Vessey MP, Westerholm B, Engelund A. Thromboembolic disease and the steroidal
content of oral contraceptives: a report to the Committee on Safety of Drugs. BMJ. 1970;2:203-
209.
2. Jespersen J, Petersen KR, Skouby SO. Effects of newer oral contraceptives on the inhibition of co-
163:496-493.
3. Stadel BV. Oral contraceptives and cardiovascular
305:612-618.
4. Croft P, Hannaforcd PC. Risk factors for acute myocardial infarction in women: evidence from the
6. Stolley PD, Strom BL, Saltwell PE. Oral contra-
7. World Health Organisation Collaborative Study of Cardiovascular Disease and Steroid Hormone
Contraception. Effect of different progestagens in low estrogen oral contraceptives on venous thromboembolic disease. Lancet. 1995;346:
1582-1588.
1589-1593.
1593-1596.
10. Spitzer WD, Lewis MA, Heinemann LA, Thoro-
good M, Marrae RD. Third generation oral con-
traceptives and risk of venous thromboembolic disorders: an international case-control study:
Transnational Research Group on Oral Contra-
tide bond cleavages and loss of functional activ-
ity during inactivation of factor Va and factor Va
14. Aparicio C, Dahlback B. Molecular mechanisms of activated protein C resistance: properties of factor V isolated from an individual with homozy-
ceptives and venous thrombosis: different sensi-
tivities to activated protein C in women using sec-
ized cross-over study on the effects of levonorg-
estrel- and desogestrel-containing oral contra-
19. Meijers JC, Middeldorp S, Thomassen ME, et al. Increased fibrinolytic activity during use of oral contraceptives is counteracted by an enhanced factor XI-independent down regulation of fibrino-
ysis: a randomized cross-over study of two low-
21. Comp PC, Esmon CT. Recurrent venous throm-
23. Alving BM, Comp PC. Recent advances in under-
standing clotting and evaluating patients with re-
167:1184-1191.
24. Lemus AE, Zaga V, Santillan R, et al. The oestro-
genic effects of gestodene, a potent contracep-
25. Kuhl H. Pharmacokinetics of oestrogens and pro-
939-955.
creased levels of activated factor VII and de-
creased plasma protein S activity and circulating

Effect of second- and third-generation oral contraceptives on the protein C system in the absence or presence of the factor V Leiden mutation: a randomized trial

Jeanet M. Kemmeren, Ale Algra, Joost C. M. Meijers, Guido Tans, Bonno N. Bouma, Joyce Curvers, Jan Rosing and Diederick E. Grobbee