Proteomics techniques and their application to hematology

Ileana M. Cristea, Simon J. Gaskell, and Anthony D. Whetton

The recent sequencing of a number of genomes has raised the level of opportunities for studies on proteins. This area of research has been described with the all-embracing term, proteomics. In proteomics, the use of mass spectrometric techniques enables genomic databases to be used to establish the identity of proteins with relatively little data, compared to the era before genome sequencing. The use of related analytical techniques also offers the opportunity to gain information on regulation, via posttranslational modification, and potential new diagnostic and prognostic indicators. Relative quantification of proteins and peptides in cellular and extracellular material remains a challenge for proteomics and mass spectrometry. This review presents an analysis of the present and future impact of these proteomic technologies with emphasis on relative quantification for hematologic research giving an appraisal of their potential benefits.

Proteomics: a definition

The fundamental role of proteins in supporting life was recognized in the early stages of biologic research. The name “protein,” derived from the Greek term, proteios, meaning “the first rank,” was used for the first time by Berzelius in 1838 to illustrate the importance of these molecules. The multivariate functions of specific cells, from movement to mitosis, are regulated by (very) approximately 9000 specialized protein types per nucleated cell. Posttranslational modifications (PTMs, such as sulfation, phosphorylation, farnesylation, hydroxylation, methylation, glycosylation) create microheterogeneity within a specific protein population, which adds to this complexity.

The array of proteins found within the cell, their interactions and modifications hold the key to understanding biologic systems. This is encapsulated in the term “proteome.” It can be defined as the protein population of a cell, characterized in terms of localization, PTM, interactions, and turnover, at any given time. The proteome is fundamentally dynamic and has an inherent complexity that surpasses that of the genome or the mRNA complement found within a cell (transcriptome; Figure 1). The development of DNA microarray technology allowed the analysis of gene expression at the mRNA level. Therefore, transcriptomics provides information about the degree of gene activity in individual tissues and the relationship to cell function, development stage, response to external stimuli, and disease.2,3 Although transcriptome data reflect the genome’s objectives for protein synthesis, they do not provide information about the finalization of those objectives.

Proteome analysis provides a view of biologic processes at their level of occurrence, thereby offering a better understanding of the physiologic and pathologic states of an organism, and becoming an important step in the development and validation of diagnostics and therapeutics. Studies of the correlation between transcriptome and proteome data have illustrated both satisfactory as well as poor correlations between the mRNA and protein concentration and turnover.4,6 The description of processes underlying hematopoietic cell development, leukemogenesis, and the functional activity of mature cells will be enhanced by application of proteomic approaches for protein characterization, study of protein-protein interaction, and, in particular, relative quantification. Here, the most effective and readily available techniques for relative sample analysis are described and their application to hematology explored.

Separation procedures and gel electrophoresis-based quantification for proteomics

Most techniques currently used in proteomics use a variety of fractionation and separation steps prior to analysis by mass spectrometry (MS). Sample preparation and fractionation (see Dreger7 and Huber et al8) are beyond the limits of this review, but their importance at different stages of a proteome study is not to be underestimated and some examples of commonly used techniques are introduced throughout this review. Sample fractionation can be performed according to compound type (see “PTM of proteins” and “SELDI-ToF MS and the search for disease markers”) or subcellular organelle localization (this section). Separation steps can be used at the protein level, as well as at the peptide level. Typical experiments include affinity separation methods, 1- or 2-dimensional gel electrophoresis, or 1- or 2-dimensional chromatographic separation.

Two-dimensional polyacrylamide gel electrophoresis (2-DE) was initially described by O’Farrell in 1975 and has evolved...
When a gene is expressed, the coding DNA strand is transcribed into an mRNA, which is edited by intron excision and the joining of exons. At the transcriptome level, the study of mRNA expression by a genome at a given time is routinely performed using microarray analysis. Proteins are synthesized and may undergo cotranslational and posttranslational modification processes that are often involved in the formation of the functionally active structure of the protein. A given mRNA sequence can give rise to more than one protein. This figure illustrates aspects of this process. Although some of the observed properties of an organism can be correlated with the activity of a single gene, most of the time these are determined by the joint action of many gene products. It is only at the proteome level that the gene exerts its "function." The operation and the functions of a living cell are usually the result of proteome dynamics. Protein-protein interactions are often responsible for the regulation of cellular metabolism (enzymes), maintenance of architectural features (structural proteins), and transfer and processing of information (signal and regulatory proteins). Because proteome analysis provides a view of the biologic processes at their level of occurrence, proteomics offers a better understanding than genomics of cell cycle, cell death, development stage, cell function, and cellular responses to external stimuli and disease. Proteomics has become an important step in the development and validation of diagnostics and therapeutics.

Despite these advances, the use of 2-DE still remains an object of debate concerning its value in proteomics research. Detractors argue it is cumbersome, time-consuming, and lacking in automation, whereas to others it remains an efficient way to separate complex protein mixtures. Issues of reproducibility, sensitivity, and protein losses during extraction for MS analysis have precluded its wider acceptance. The undisputed need for replicate studies (at least 3 replicate studies per sample) for the assessment of reproducibility of protein pattern and relative quantity adds to the time necessary for the assessment and interpretation of data. Nonetheless, software available for relative 2-DE spot pattern analysis is sufficiently sophisticated to allow relative quantification from DIGE or other experiments (Figure 2 and Table 1, respectively). Using such software, 2-DE gels can be used to identify significant differences between patient samples, such as chronic lymphocytic leukemia patients with mutated and unmutated immunoglobulin heavy-chain loci, respectively. Use of 2-DE can separate the thousands of plasma or serum proteins, including posttranslational variants of some proteins. The requirement for higher resolution separation can be achieved using several 2-DE gels with overlapping narrow pH gradients that reduce the presence of multiple proteins per spot, such as differentially posttranslationally modified proteins. The use of narrow IPGs also allows for an increased loading capacity, and therefore improves the detection of low-abundance proteins. A concerted effort to map the human plasma proteome (including the 2-DE approach) is now underway in the belief that further proteins of diagnostic and therapeutic value will be identified.

Further application of gel-based technologies in hematology can be seen in a variety of different studies. Prelabeling cells with 32P has been used to recognize proteins phosphorylated as a consequence of cytokine action. No assumptions are made about the phosphorylated proteins prior to identification. For example, new substrates for mitogen-activated protein (MAP) kinase have been recognized using an approach based on 2-DE. Recently, a fluorescent dye that reversibly associates with phosphorylated proteins within gels has been characterized. Preliminary experiments in our laboratory (C. A. Evans, R. Unwin, unpublished observations, July 2003) indicate that it does have value as an initial screen for agonist-stimulated phosphorylation events.
hematopoietic cells, obviating the need for prelabeling and opening the possibility of performing such studies on freshly isolated primary cells. The sensitivity and specificity of the technique, however, will be key issues. The experimental simplicity of this technique contrasts with alternative strategies such as the more quantitatively rigorous approach taken by Mann’s group to signal transduction proteomics. Untreated HeLa cells, grown in medium containing 13C-arginine, were mixed with cells treated with epidermal growth factor (EGF) after culture in 12C-arginine–containing medium. A total of 28 proteins that selectively bind the SH2 domain of the adaptor protein Grb2 were recognized using 12C-13C isotope labeling technique. The samples were covalently labeled with succinimidyl esters of different cyanide dyes (Cy2, Cy3, and Cy5). The samples were then mixed together and separated on the same 2-D SDS-PAGE gel. The gel is scanned at the different excitation frequencies, the images merged, and the difference in protein abundance calculated. However, to maintain the solubility of the proteins during the electrophoretic separation, 2-D DIGE requires that only 1% to 2% of the lysine residues be derivatized (the derivatization increases the hydrophobicity of the proteins). Recently, a new set of dyes intended to fluorescently label all cysteine residues within a protein have been made available and these offer greater sensitivity. (C) Following separation, the protein spot is usually excised, subjected to in-gel enzymatic proteolysis, and analyzed by MS, usually MALDI-MS. The MALDI peptide fingerprint is often sufficient for confident protein recognition. For further confirmation, amino acid sequence information, or recognition of low-abundance proteins, tandem mass spectrometry (MS/MS) analysis is performed, generally using electrospray (ES) ionization. A prevalent method that separates proteins at the peptide level is liquid chromatography (LC), usually used in conjunction with MS/MS (LC-MS/MS).
A nonquantitative approach to identification of such proteins within biologic material is exemplified by the work of Link et al, who submitted a protein complex directly to enzymatic digestion and characterized the resulting complex mixture of peptides by 2-dimensional chromatographic (strong cation exchange–reversed phase) separation and electrospray-tandem MS (ES-MS/MS) analysis (see next section). The resulting product ion spectra were automatically correlated with predicted amino acid sequences in translated genomic databases. This method was further developed by the same group who achieved full automation. The technique, termed multidimensional protein identification technology (MudPit), involves not only the separation of peptide mixtures but direct MS analysis and database searching. This study achieved in a single experiment a much higher number of detected and recognized proteins than with a 2-DE study. This large-scale identification, loosely termed “shotgun” proteomics, has a throughput higher than 2-DE/MS approaches and can deliver high-quality data but requires sophisticated and automated LC-MS/MS apparatus and an acceptance that few conclusions can be drawn on the amount of any protein/peptide found in the sample.

Protein recognition using MS

The recent advances in proteomics were mainly driven by the increasing ability of MS to detect and characterize low levels of proteins. MS-based proteomics has a growing role in biomedical research where limited sample material is available, as feintomole sensitivity is routinely achieved. In hematology, MS has been used for protein, peptide, and DNA sequencing, protein-folding studies, noncovalent interaction analysis, analysis of PTMs, identification of novel proteins, and in a variety of diagnostic and drug discovery projects.

Table 1. Methods of protein detection for gel-based proteomics

<table>
<thead>
<tr>
<th>Visualization method</th>
<th>Limit of detection, ng</th>
<th>Dynamic range</th>
<th>Detection</th>
<th>No. of samples/gel</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colloidal Coomassie blue</td>
<td>8-10</td>
<td>20-fold</td>
<td>Densitometry</td>
<td>1</td>
<td>Compatible with analysis by MS.</td>
</tr>
<tr>
<td>Silver</td>
<td>2-10</td>
<td>8- to 10-fold</td>
<td>Densitometry</td>
<td>1</td>
<td>Some protocols compatible with analysis by MS.</td>
</tr>
<tr>
<td>Zinc-imidazole</td>
<td>5-10</td>
<td>Linear response restricted to high ng to μg amounts of protein</td>
<td>Densitometry</td>
<td>1</td>
<td>Compatible with analysis by MS.</td>
</tr>
<tr>
<td>Cy3, Cy5</td>
<td>5-10</td>
<td>1000-fold</td>
<td>Fluorescent</td>
<td>2-3</td>
<td>Compatible with analysis by MS.</td>
</tr>
<tr>
<td>SYPRO Ruby</td>
<td>1-8</td>
<td>1000-fold</td>
<td>Fluorescent</td>
<td>1</td>
<td>Compatible with analysis by MS.</td>
</tr>
</tbody>
</table>

For proteome analysis, the most important criteria to be considered when evaluating methods of protein detection are limit of detection, dynamic range, homogeneity, and compatibility with MS analysis. The properties of some of the commonly techniques are shown. Most proteomics studies require limits of detection in the low nanogram protein range, which would correspond to the femtomole levels usually detectable by MS analysis (eg, 1-20 ng, corresponding to 100 fmol of a 10-200 kDa protein). A wide linear dynamic range is essential when the aim of the study is relative quantification between samples. The homogeneity of the detection refers to the uniformity of staining between different classes of proteins. When the method targets only one amino acid, proteins that do not contain that particular residue are not detected (eg, cysteine). An ideal detection method would target all amino acid residues equally, so that the signal detected would be directly proportional to the length of the amino acid chain. The compatibility of the method of detection with MS analysis is particularly important for the recognition of the proteins. The presence of formaldehyde or glutaraldehyde in various solutions used for silver staining (fixing, silver impregnation, and developing) interferes with protein recognition because these aldehydes alkylate the α and ε amino groups of proteins. Silver staining methods compatible with MS analysis were developed by removing the glutaraldehyde and decreasing the use of formaldehyde in the stain. Although most detection methods allow only intergel comparison, the new generation of cyanide dyes that chemically modify lysine or cysteine residues offer the potential for multiplexing in gel-based experiments (see “Separation procedures and gel electrophoresis-based quantitation for proteomics” and Figure 2) while not compromising downstream MS analysis. Regardless of the detection method, the principal method for relative quantification is densitometry analysis. Providing that there is a good reproducibility between the 2-DE protein patterns, densitometry is an important tool in proteome analysis because it allows the simultaneous detection and quantification of hundreds of proteins from a multitude of cell states. A number of computer-assisted image analysis software packages that allow the comparison of 2-DE protein patterns, such as PDQuest (Bio-Rad, Hercules, CA), Melanie (Bio-Rad), and Progenesis (Non-linear Dynamics, Durham, NC), are now commercially available. However, the technique suffers from a number of limitations, either inherited from 2-DE’s lack of reproducibility and poor dynamic range of staining methods or, depending on which software is used for the analysis, from its own poor sensitivity of detection. New software and methods can improve protein detection and image warping, but the success of the matching still depends extensively on the similarity of the protein patterns. For in-gel comparison, DIGE experiments plus the appropriate analytical software therefore offer an effective way forward in relative quantification of the hundreds of proteins found in 2-DE gel experiments.
The main components of a mass spectrometer are an ion source, one or several mass analyzers, and a detector. Electrospray (ES; Figure 3B) and matrix-assisted laser desorption ionization (MALDI; Figure 3A) processes provide “soft” (meaning low-energy) ionization methods for a variety of biomolecules, including peptides, proteins, drug metabolites, oligonucleotides, and carbohydrates, to enable their measurement by MS. There are several types of commercially available mass spectrometers that combine ES or MALDI with a variety of mass analyzers. In simple terms, gas-phase ions, produced in the ion source, are introduced into the mass analyzer and differentiated according to their mass/charge (m/z) ratio on the basis of their motion in a vacuum under the influence of electric or magnetic fields. Figure 2C illustrates a typical experiment in which the identity of a protein from a 2-DE gel can be discerned using peptide mass fingerprinting by MALDI time-of-flight (ToF) MS, or tandem MS (MS/MS).

SELDI-ToF MS and the search for disease markers

The technique (Figure 4) has at its heart a means of enriching for proteins with certain chemical characteristics that determine their interaction with a set of specific surfaces used as a laser desorption ionization target. As such, it is often cited as an array technology (see “Protein arrays”). Unlike other MS-based strategies (Figure 2), the SELDI approach does not generally include enzymatic digestion of proteins, so that detection of intact (generally small) proteins is involved. One advantage of this chip-based technique is that crude samples can readily and rapidly be analyzed with high throughput. The key disadvantage is that the mass spectrum obtained does not enable identification of the proteins analyzed and further work is therefore required. The obtained data are analyzed to recognize critical features that may be used as markers for diagnosis or prognosis. In a landmark study, a training set of serum SELDI-ToF spectra from 50 unaffected women and 50 patients with ovarian cancer was analyzed by an iterative algorithm that identified a proteomic pattern to discriminate healthy patients from those with malignant disease, using the minimum amount of information. A similar study on prostate cancer and lung cancer reveals the general applicability of this technique. Furthermore, there are indications that determination of a serum protein level (eg, high-density lipoproteins) can be monitored effectively and straightforwardly with SELDI-ToF MS and therefore, indicators of hematologic disease could theoretically be measured in the same manner.

![Figure 3. MS instrumentation used in proteomics.](https://www.bloodjournal.org/.../103,10/3628-fig3.jpg)
fashion. In an adaptation of the technique thin slices of solid tumors are also being used as targets for MALDI-ToF MS. The application of this mass spectrometric approach hopefully will deliver a raft of new clinical indicators and surrogate markers for response. A considerable effort, initiated by Caprioli and coworkers, has been applied for the direct analysis of tissue slices by MALDI MS.46 More recent work, such as the study of non-small-cell lung tumors,47 showed the potential of this technique for the detection of disease markers.

Sequence analysis of peptides and proteins using MS

Tandem mass spectrometry (MS/MS) allows for protein and peptide sequencing and has therefore evolved as an indispensable tool for protein recognition, structure elucidation, and characterization of PTMs. Figure 5 shows examples of ES Q-ToF MS/MS analyses of peptides for amino acid sequence information (A) and detection of site of phosphorylation (B). Sequence analysis of peptides by collision-induced dissociation (CID) during MS/MS48 is a favorable alternative to the classical sequencing performed by the Edman degradation technique.49 In contrast to Edman degradation, which remains valuable for N-terminal sequencing of large amounts of relatively pure peptides, MS/MS analysis can be used for the sequencing of peptides present in mixtures or blocked at the N-terminus of the sequence. The recent advances in coupling a MALDI ion source to ion trap,50 ToF/ToF,51 and Q-ToF52 mass spectrometers provide enhanced opportunities for high-throughput analyses.

The development of computer algorithms that can correlate the data obtained from MS and MS/MS analyses with databases enables one to use either peptide mass fingerprint information or MS/MS CID data to recognize a protein.53,54 Recently developed algorithms allow the search of uninterpreted or partially interpreted MS/MS spectra,55,56 for example, SEQUEST,55 Mascot, PepFrag, Sonar, XProteo, and MS-Tag. The programs search for all peptides present in databases that have the same mass as the precursor ion selected by the user, predict the principal fragment ions that would be expected for these database peptides, and then match these with the experimental data. In this way the original peptide can be identified in terms of amino acid sequence and the protein from which it originated deduced. The confidence in the result obtained can be increased using a variety of peptide derivatization methods57,58 designed to obtain a specific set of parameters to be included in the algorithms for database search, which would reduce the ambiguity of the sequence.

![Figure 4](image-url) **Figure 4.** Principle of surface-enhanced laser desorption ionization (SELDI)-ToF MS. This is a technique for the enrichment of proteins with specific chemical characteristics and combines chromatography with MS. ProteinChip arrays have been designed that contain chemically or biochemically treated surfaces. The sample, consisting of crude extracts or mixtures of whole proteins, is applied to the surface. After a series of washes, the targeted proteins are selectively retained. An energy-absorbing ion is added to the surface and the sample is subjected to laser desorption ionization. The formed ions are measured using a ToF mass analyzer as previously described. Characteristic features of spectra can be used for diagnostic purposes (“SELDI-ToF MS and the search for disease markers”).

![Figure 5](image-url) **Figure 5.** Sequencing of peptides using MS/MS. Peptide fragmentation by collisionally activated dissociation (CAD) during MS/MS48 allows the recognition of complete or partial peptide sequence. Following collisional activation, the peptides undergo fragmentation along the backbone or in their side chains giving rise to product ions that can be attributed to the amino acid sequence. The nomenclature for classifying these ions allows the labeling of all the various fragment ions. The 3 possible cleavage points of the peptide backbone are called a, b, and c, when the charge is retained at the C-terminal fragment of the peptide, and x, y, and z when the charge is retained by the C-terminal fragment. The subscripts n and m indicate which amide bond is cleaved counting from the N- and C-terminus, respectively, and thus also n and m. The doubly charged precursor ion selected for fragmentation, and the [M+2H]2+ denotes the doubly charged precursor ion selected for fragmentation. An almost complete series of b and y ions was obtained in this analysis resulting in a facile identification of the peptide sequence. Panel B illustrates the application of MS/MS analysis for the search for sites of phosphorylation. The product ion spectrum, recorded in positive mode, was obtained from the 1-dimensional liquid chromatography-tandem electrospray mass spectrometry analysis (LC-MS/MS) of a phosphorylated peptide. The signals between 1200 and 2000 m/z are magnified by a factor of 2.5. The sites of phosphorylation are searched by scanning for loss of phosphate or characteristic immonium ions (Figure 7). [M+2H]2+ denotes the doubly charged precursor ion selected for fragmentation, and the [M+2H]2+ -H3PO4 denotes the characteristic loss of the phosphate moiety from the precursor ion.
MS-based quantitative proteomics

The methods most commonly used for quantitative proteome analysis are relative quantification methods. Although densitometry or fluorescent analysis of spot intensity following 2-DE gel staining have an important niche in cell biology, a more versatile technique for precise relative quantification involves the differential labeling of each set of proteins or peptides derived from 2 different cell states with light and heavy isotopes of the same chemical reagent and subsequent MS analysis. This approach allows for relative quantification of basic, hydrophobic, or large proteins excluded from analysis using 2-DE or DIGE. Two derivatized samples are combined and analyzed by MS, which allows the calculation of the relative abundance levels of the proteins. This method is based on the assumption that the structurally similar isotopically labeled peptides have identical ionization efficiencies during the mass spectrometric analysis. The light- and heavy-labeled peptides appear in the mass spectrum as doublets, and the peak heights illustrate the relative abundance of the protein in each cell state. In MS the intensity of a specific peptide signal is dependent on the chemical and physical properties of the analyte, the associated solvent, and other factors. The signals from 2 peptides, even from the same protein, will therefore differ in intensity. Only the use of a direct comparison of chemically similar entities can yield relative quantification. The isotopic labels can be incorporated either during cell culture, or at the protein or peptide level.

In our laboratory, we have used guanidination with 14N- and 15N-O methylisourea for a combined increased sensitivity of detection of lysine C-terminus peptides, relative quantification of 2 cell states, and de novo sequencing. The 2Da mass difference between the light and heavy isotope-labeled peptides allows for simultaneous selection and fragmentation of both isotopomers during MS/MS and assignment of C-terminus fragments is therefore readily achieved by virtue of their presence as doublets in the product ion spectra. Alternatively, the differential derivatization can be followed by an enrichment step prior to the analysis by MS. Enzymatic digestion of proteins with either 18O or 18O, followed by immobilized metal-affinity chromatography, dephosphorylation, and mass spectrometric analysis has been successfully applied for the relative quantification of protein phosphorylation. Proteins from 2 cell states can be labeled and separated using an isotope-coded affinity tag (ICAT) approach. The chemical reagent initially used in this method consisted of a protein reactive group, a linker region, and a biotin tag and its use is demonstrated graphically (see the information available online at the Blood website; use the Supplemental Materials link at the top of the online article). The mixture of the 2 derivatized proteins is digested and separated by affinity extraction prior to tandem mass spectrometric analysis. The initial complexity of the mixture is reduced during the affinity extraction step. ICAT technology has been applied for the separation and quantification of proteins with extreme pI values, low abundance, and membrane-bound proteins.

Although it is sometimes suggested that ICAT frees one from the constraints of the lesser technology of 2-DE, a recent study comparing ICAT and 2-DE demonstrated that neither offers comprehensive coverage of a proteome. A full evaluation of the relative quantification offered by these 2 techniques is required and we are presently undertaking such a study. The use of an ICAT approach for the identification and characterization of 491 microsomal proteins and determination of changes in expression during development of the promyelocytic cell line HL-60 demonstrates the power of this technique, especially because many of the proteins identified were hydrophobic. Nonetheless, such studies are not a casual undertaking. A paradigm study on the leukemogenic oncogene product Myc by Shioi et al shows the broad effects of a single protein on pathways as diverse as motile control and protein synthesis.

Recently, methods that use synthetic peptides, designed to mimic some of the naturally occurring peptides following the enzymatic digestion of the proteins of interest, have been developed for absolute quantification of proteins. The synthetic peptide, labeled with a stable isotope, is mixed with the sample...
prior to enzymatic digestion and analysis by LC-MS/MS. The peptide can be synthesized to contain a variety of modifications (such as phosphorylation) to allow quantification of PTMs. This will be a key aid in future pharmacokinetic studies and more generally in studies on signal transduction and other aspects of cell studies requiring absolute quantification.

Protein arrays

Abundant proteins can obscure the quantification of lower abundance proteins, such as signaling molecules or kinases. This problem can be reduced using ICAT and MudPit or prefractionation prior to 2-DE.28,30,70 Protein microarrays offer a different solution and have the potential for high-throughput applications to identify novel drug targets and disease markers and a sensitivity born of new technical approaches. The sequencing projects offer opportunities to manufacture protein chips that embrace the thousands of proteins encoded in the genome. Zhu et al in a landmark paper71 used gene tagging for enrichment of thousands of proteins from yeast to create a protein array and used this to screen for calmodulin- and phospholipid-binding proteins. This study is but one in which key issues of the appropriate surface for protein attachment, the maintenance of native protein folding, and the methods of detection for interacting agents have been addressed. Exciting advances include application of planar waveguide technology with which the measurement of as few as 500 cytokine molecules can be achieved,72 as reviewed by Mitchell.73 Advances in surface chemistry, microfluidics, and detection techniques will make rapid analysis of proteins in samples a reality in the future.74,75

Protein array technologies using discrete sets of known proteins are plainly of potential value in diagnostic or prognostic testing. A microarray of 60 antibodies has already been constructed for cluster of differentiation (CD) antigens by binding antibodies to a nitrocellulose-coated glass slide. The results achieved with this antibody array compared well with flow cytometric assessment of CD expression on a number of leukemic cell types and normal leukocytes.76 One strength of this approach is the relatively high number of markers that can be assayed per experiment compared to flow cytometry. However, discrete binding to subsets of cells is not easily assessed. The creation of high-density antibody microarrays using phage display technology and other methods, reviewed by Hebestreit,77 remains a realistic proposition for the characterization of the proteome. Development of appropriate arrays for concerted proteomics research projects will continue and, in the future, simultaneous measurement of many proteins from limited volumes of samples of complex biologic mixtures (such as serum or cell lysates) will be possible. Similarly, proteins can be arrayed to search for interacting partners. For example, Procognia (Maidenhead, Berkshire, United Kingdom) has arrayed p53 proteins with germline single-nucleotide polymorphism (SNP), or functional potassium regulatory channels; these arrays identify drug binding and effects on proteins.

Other approaches are being derived for global analysis of protein function and these include activity-based protein profiling (ABPP) for enzymes such as tyrosine phosphatases using selective modification of specific enzymatic active sites.78 Aptamers, which are single-stranded oligonucleotides that bind to proteins of interest, also offer a route to array-based techniques, for example, in protein quantification. Directed evolutionary chemistry processes using systematic evolution of ligands by exponential enrichment (SELEX) identify aptamers by starting with a combinatorial library and the protein of interest (tethered to an appropriate substratum), a repetitive process,79 which leads to the creation of a DNA or RNA molecule with a high affinity for a specific protein. There may be therapeutic potential; for example, a thrombin aptamer may have clinical value as an anticoagulant.80 Somalogic (Boulder, CO) has developed aptamer based protein arrays for the measurement of thousands of proteins from a single sample.

PTM of proteins

Following synthesis, the protein complement of a cell is subjected to a barrage of reversible or permanent modifications that control protein activity and interactions. To date, over 300 PTMs have been reported,81 including phosphorylation, glycosylation, deamidation, ubiquitination, proteolytic processing, fatty acylation, and glycosylphosphatidylinositol lipid anchor attachment. These reactions are catalyzed by enzymes that can also be regulated by PTMs. The coinage of the word “proteome” has spawned terms like “phosphoproteome” or “glycome.” Inherent in these new terms is a miasma of PTMs that require systematic definition. The technologies for determination of these PTMs are in their infancy, which means throughput is slow, but significant advances are being made. The detection of PTMs using MS-based methods is challenging for several reasons. In contrast to the usual recognition of a protein, which requires the detection of only one or a few peptides, the identification of the PTM of a protein relies on the detection of the particular peptide(s) that bears the site of modification. A more complete coverage of the amino acid protein sequence can be usually achieved using individual or sequential proteolytic digestions with different enzymes. A variety of algorithms (eg, FindMod and FindPep tools, described in the Supplemental Document) have been developed that, using the peptide fingerprint of the analyzed protein, search databases for potential sites of PTMs. This technique is more reliable if it is applied following the initial identification of the protein and the search for potential PTMs is performed only using MS signals not otherwise assigned to peptide fragments. The covalent bonds between the PTMs and the peptides are of relatively low energy and therefore tend to dissociate during MS analysis, in some cases, giving rise to characteristic patterns in mass spectra that can be used for the identification of the modification.82 Algorithms have been developed that search peptide fingerprints for pairs of peaks that are potential signatures of PTMs (eg, 79 Da for phosphopeptides; Figure 7). Unfortunately, most frequently, PTMs have a low stoichiometry. A variety of methods, such as affinity purification and chemical modifications, have been developed to be used prior to the MS analysis for the enrichment and separation of proteins/peptides having the modification of interest. Figure 7 illustrates some of these in the context of protein phosphorylation.83 The variety of methodologies used for the analysis of protein phosphorylation has been thoroughly reviewed by McLachlan and Chait (and references within). Affinity separation followed by MS/MS analysis for the detection of phosphotyrosine-specific immonium ions has been recently successfully used for the detection of 9 phosphorylation.
sites of Bcr/Abl fusion oncoprotein, of which 6 were novel.85 Another elegant example is the sequential use of phosphotyrosine immunoprecipitation, methyl esterification, IMAC (Figure 7), and nanoflow reversed-phase high-performance liquid chromatography (HPLC) ES MS for the study of temporal changes in tyrosine phosphorylation following the inhibition of Bcr-Abl protein tyrosine kinase with imatinib mesylate in chronic myelogenous leukemia cells.86 The key role of tyrosine kinases in leukemogenesis determines that such approaches will be invaluable in defining downstream targets of kinases in the future. The relative and absolute quantification of drug effects on specific phosphorylation events can then be pursued using the peptide standards approach described.68,69

Proteomics experimental data archiving

The increased complexity of proteome technologies and the subsequent development of high-throughput proteome analysis resulted over the last years in an overwhelming amount of experimental data. The diversity of the data is also enhanced by the dynamics of the proteome context in which the experiments were carried out. There is a clear need to develop internationally agreed standards for archiving proteomics experimental data. Although comprehensive databases of 2-DE gels are present on the Web, such as the Expert Protein Analysis System (ExPASy), the available information is not sufficient for confident comparison of data sets. On the contrary, very few MS data sets are publicly available. The recently proposed Proteomics Experiment Data Repository (PEDRo)87 model resembles the minimum set of information about the microarray experiment (MIAME)88 model that has already been implemented for the archiving of transcriptome data. The PEDRo model takes into consideration all the various steps involved in a proteomics experiment, such as sample generation and processing, and parameters for the MS analysis and data interpretation, to capture the relevant information required for the reproduction, comparison, and archiving of any proteomics experiment.

In many respects the repertoire of experiments that can be performed in hematology has been expanded greatly by advances in MS and proteomics. This review gives an overview of some of these approaches and where they can be applied to hematology. It is likely that within 5 years their application will have transformed our knowledge of key processes in normal and malignant hematopoiesis and blood cell function.

Acknowledgments

The authors are grateful to Elaine Spooncer and Wenzhu Zhang for critical reading of this manuscript.
References

58. Brancia FL, Oliver SG, Gaskell SJ. Improved ma-

59. Steen H, Pandey A. Proteomics goes quantita-
tive: measuring protein abundance. Trends Bio-

60. Han DK, Eng J, Zhou H, Aebersold R. Quantita-
951.

61. Marshall AG, Senko MW, Li W, et al. Protein mo-
molecular mass to 1 Da by 13C 15N double deple-

62. Pratt JM, Robertson DH, Gaskell SJ, et al. Stable
isotope labelling in vivo as an aid to protein identi-
fication in peptide mass fingerprinting. Proteom-

64. Bonenfant D, Schmelze T, Jacinto E, et al. Quan-

65. Griffin TJ, Gygi SP, Rist B, et al. Quantitative pro-
teinomic analysis using a MALDI quadrupole time-

66. Patton WF, Schülenberg B, Steinberg TH. Two-
dimensional gel electrophoresis: better than a
poke in the ICAT? Curr Opin Biotechnol. 2002;13:
803-808.

67. Shiio Y, Donohoe S, Yi EC, Goodlett DR, Aeber-
sold R, Eisenman RN. Quantitative proteomic
analysis of Myc oncoprotein function. EMBO J.

68. Lamond AI, Mann M. Cell biology and the ge-
nome projects—a concerted strategy for charac-

sis of protein activities using proteome chips. Sci-

70. Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M. Zepolens' protein microar-
rays: a novel high performance microarray plat-
form for low abundance protein analysis. Pro-

72. Tausig MJ. Protein arrays: issues to be ad-
dressed: The chairperson's introduction to the
session peptide and protein chips from the ESF
workshop Proteomics: focus on protein interac-
tions. Comp Functional Genomics. 2001;2:298-
306.

73. MacBeath G, Schreiber SL. Printing proteins as
microarrays for high-throughput function determi-

74. Betro L, de la Vega O, dos Remedios CG, Mulli-
gan SP, Christopherson RI. Immunophenotyping of
leukemias using a cluster of differentiation anti-
body microarray. Cancer Res. 2001;61:4483-
4489.

75. Hebestreit HF. Proteomics: an holistic analysis of
nature's proteins. Curr Opin Pharmacol. 2001;1:
513-520.

76. Adam GC, Sorensen EJ, Cravatt BF. Chemical
strategies for functional proteomics. Mol Cell Pro-

77. Brody EN, Willis MC, Smith JD, Jayasena S, Zichi
D, Gold L. The use of aptamers in large arrays for
molecular diagnostics. Mol Diagn. 1999;4:381-
388.

78. Tasset DM, Kubik MF, Steiner W. Oligonucleotide
chip microarray. Cancer Res. 2001;61:4483-
4489.

79. Martinovic S, Veenstra TD, Anderson GA, Pasa-
tolic L, Smith RD. Selective incorporation of iso-
topically labeled amino acids for identification of

80. Walker J, Flower D, Rigley K. Microarrays in he-

81. Steiner S, Witzmann FA. Proteomics: applica-
tions and opportunities in preclinical drug devel-

82. Royhill F, Karas M. Mass spectrometry of
peptides and proteins by matrix-assisted ultra-

83. Stenbakke A, Jensen ON, Olsen JV, Haselmann
KF, Zubarev RA. Electron capture dissociation of
singly and multiply phosphorylated peptides.
Rapid Commun Mass Spectrom. 2000;14:1793-
1800.

84. Oda Y, Nagasu T, Chait BT. Enrichment analysis of
phosphorylated proteins as a tool for probing the
379-382.

85. Martinez S, Veenstra TD, Anderson GA, Pa-
sta-Tolic L, Smith RD. Selective incorporation of iso-
topically labeled amino acids for identification of

86. Zhang R, Sioma CS, Wang S, Regnier FE. Frac-
tionation of isotopically labeled peptides in quanti-
tative proteomics. Anal Chem. 2001;73:5142-
5149.

J, Baldwin MA, Burlingame AL. Mass spectromet-
ic analysis of protein mixtures at low levels using
cleavable 13C-isotope-coded affinity tag and mul-
tidimensional chromatography. Mol Cell Proteom-

88. Mann M, Ong SE, Gronborg M, Steen H, Jensen
ON, Pandey A. Analysis of protein phosphoryla-
tion using mass spectrometry: deciphering the
phosphoproteome. Trends Biotechnol. 2002;20:
261-268.

89. Shevchenko A, Willm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-
68:850-858.
Proteomics techniques and their application to hematology

Ileana M. Cristea, Simon J. Gaskell and Anthony D. Whetton