Brief report

Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants

Hervé Avet-Loiseau, Richard Garand, Laurence Lodé, Jean-Luc Harousseau, and Régis Bataille, for the Intergroupe Francophone du Myélome

In an attempt to address the issue of cytogenetic features of multiple myeloma (MM) variants, we have analyzed a series of 8 IgM, 9 IgD, 2 IgE, and 14 nonsecretory (NS) MM cases using fluorescence in situ hybridization. A very high incidence (83%) of t(11;14)(q13;q32) was detected in the IgM (7 of 8), IgE (2 of 2), and NS (11 of 14) MM cases, but not in the IgD cases (2 of 9). Of note, no t(4;14) was observed in this cohort of patients. This increased incidence of t(11;14) was associated with 2 dominant features in these variants, namely, a “lymphoplasmacytic” presentation mainly in IgM MM and a lower secretory capacity in the others, 2 features previously associated with t(11;14). Of major interest, t(11;14) was never observed in Waldenström macroglobulinemia or in IgG/IgA “lymphoplasmacytic” lymphomas. Thus, for unknown reasons, t(11;14) is the hallmark of IgM, IgE, and NS MM, but not IgD MM, with a 5-fold increase of its incidence compared to that of IgG and IgA MM. (Blood. 2003;101:1570-1571)

© 2003 by The American Society of Hematology

Study design

Patients with variant isotypes

We analyzed 8 patients with IgM MM, 9 with IgD MM, 2 with IgE MM, and 14 with NS MM. Three patients with IgM MM had hypercalcemia, whereas one patient presented “lymphoma-type” symptoms with liver and spleen enlargement. None of them presented disseminated osteolytic lesions (only one patient displayed 2 osteolytic lesions, whereas 2 others showed only one or no lesion). Apart from the IgM isotype, the cellular features were typically those of myeloma cells, as previously reported.1 14 The 9 patients with IgD MM all had typical MM and did not present significant differences with classical MM. The 2 patients with IgE MM had lytic bone lesions. Patients with NS MM (defined by the absence of an M component on serum and urine electrophoreses) did not present any specific feature; 9 of them displayed extensive bone lesions, including 3 patients with symptomatic hypercalcemia. Approval was obtained from the ethical committees of the University Hospital of Lille and Toulouse institutional review boards for these studies. Informed consent was provided according to the Declaration of Helsinki.

FISH experiments

All the MM samples have been purified using the Miltenyi technology (anti-CD138–coated magnetic beads; Paris, France), as previously reported2 After purification, plasma cells were fixed, and fluorescence in situ hybridization (FISH) experiments, using probes specific for the chromosome 14q32 rearrangements, that is, t(14q32) and the t(4;14) and t(11;14) translocations were performed. The technique and the probes have been previously published3

Results and discussion

A high incidence of t(11;14) was observed in IgM, IgE, and NS MM, but not in IgD MM. Indeed, whereas t(11;14) is observed in 16% of all MM and in 2 of 9 (22%) IgD MM cases, FISH analysis of IgM MM revealed IGH-CCND1 fusion(s) in 7 of 8 cases

From the Laboratory of Hematology, University Hospital, and Department of Clinical Hematology, University Hospital, Nantes, France.

Supported by the Association pour la Recherche sur le Cancer and a Programme Hospitalier de Recherche Clinique.

Reprints: Hervé Avet-Loiseau, Laboratoire d’Hématologie, Institut de Biologie, 9 quai Moncousu, 44093 Nantes Cedex 1, France; e-mail: havetloiseau@chu-nantes.fr.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 U.S.C. section 1734.

© 2003 by The American Society of Hematology
(88%; Table 1). A similar high incidence was observed in IgE MM (2 of 2) and in NS MM (11 of 14; 79%). Overall, t(11;14) was observed in 83% of IgM, IgE, and NS MM cases, a 5-fold increase as compared to IgG and IgG/IgA MM. Of note, none of these patients presented t(4;14); 0 of 33 versus 66 of 679 (10%; P = .14). Thus, IgM, IgE, and NS MM present a strikingly higher incidence of t(11;14) than IgD or other classical MM, all these variants lacking t(4;14). A literature survey did not reveal any cytogenetic analysis in variant MM cases, but showed a cryptic t(11;14) in the unique IgE myeloma cell line. In the control MM population, ie, IgG, IgA, and light-chains only MM, the incidence of IGH-CCND1 fusions was 15%, 10%, and 31%, respectively. Even though light-chains only MM differ from IgG and IgA MM by a higher incidence of t(11;14), this incidence is incomparable to that observed in the current MM variants. A “lymphoplasmacytic” morphology and a lower secreting capacity have been recently reported as the only correlations between presenting features and t(11;14) in a large cohort of patients. Of note, none of these patients presented t(4;14); 0 of 33 versus 66 of 679 (10%; P = .14). Thus, IgM, IgE, and NS MM present a strikingly higher incidence of t(11;14) than IgD or other classical MM, all these variants lacking t(4;14). A literature survey did not reveal any cytogenetic analysis in variant MM cases, but showed a cryptic t(11;14) in the unique IgE myeloma cell line. In the control MM population, ie, IgG, IgA, and light-chains only MM, the incidence of IGH-CCND1 fusions was 15%, 10%, and 31%, respectively. Even though light-chains only MM differ from IgG and IgA MM by a higher incidence of t(11;14), this incidence is incomparable to that observed in the current MM variants.

A “lymphoplasmacytic” morphology and a lower secreting capacity have been recently reported as the only correlations between presenting features and t(11;14) in a large cohort of individuals with MM. It was of interest to see if such correlations were observed in our current study. As previously emphasized, all IgM MM had a “lymphoplasmacytic” presentation. No slide was available for the 2 IgE MM cases. Bone marrow smears of 8 of the 14 patients with NS MM were available. Interestingly, a “lymphoplasmacytic” morphology was observed in 4 of 8 cases, and especially in 4 of 6 of the t(11;14) cases. Thus, a “lymphoplasmacytic” morphology is the hallmark of IgM and NS MM at least, but not of IgD MM. Of note, whereas in LPL and WM, malignant cells are essentially lymphoid cells with a plasmacytic inflection, in MM variants, the cells resemble essentially small mature plasma cells, rather than “lymphoplasmacytic” cells, and correspond to the "small cell type" of the Birtl classification. Finally, the analysis of 16 LPL and 13 WM cases failed to identify any IGH-CCND1 fusion.

<table>
<thead>
<tr>
<th>Ig type</th>
<th>t(11;14)</th>
<th>t(4;14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>15%*</td>
<td>8%*</td>
</tr>
<tr>
<td>IgA</td>
<td>10%*</td>
<td>19%*</td>
</tr>
<tr>
<td>Light chains only*</td>
<td>31%*</td>
<td>4%*</td>
</tr>
<tr>
<td>IgD (n = 9)</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td>NS, IgM, IgE (n = 24)</td>
<td>83%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*As reported in Avet-Loiseau et al.2

About the correlation with a lower secreting capacity? Fourteen of these 22 variants were NS MM, thus directly involved in this correlation. On the other hand, in comparison with classical IgG and IgA MM, IgM cases were not low-secretory MM (median serum M component = 46 g/L; range = 14–95 g/L). NS MM presents a special form of sterile plasma cells, characterized by an incapacity to assemble Ig chains. However, from an immunologic viewpoint, they have to be considered as postswitch MM. Of note, an abnormally high (but to a much lesser extent) incidence of t(11;14) is also observed in light-chains only MM. A likely hypothesis would be to consider that this MM subclass would be heterogeneous, some of them corresponding to NS (or low-secreting) MM. Careful prospective analyses of light-chains only MM would enable us to answer this question. Interestingly, a high incidence (55%) of t(11;14) has also been reported in systemic amyloidosis, another form of plasma cell dyscrasia characterized by a low but amyloidogenic light-chain production. Overall, a plausible hypothesis would be to consider that t(11;14) is mainly observed in clones with small mature cell type or low-secreting features or both.

Until now, the reasons for the specific selection of the 11q13 chromosomal region in the MM variants remain unknown, as it remains unknown in mantle cell lymphoma (MCL), the only B-cell malignancy with 100% of such translocations. Furthermore, the molecular consequences of the up-regulation of the cyclin D1 are totally obscure because patients with t(11;14) do not display a higher proliferative index (personal data and Fonseca et al8) and have a better prognosis. This is compatible with the well-documented better prognosis of NS MM,13 knowing that the prognosis of IgM and IgE MM is not evaluable (not > 0.2% of the cases). Further experiments, especially using the microarray technology, should enable us to decrypt the molecular changes associated with this specific translocation.

Acknowledgments

We thank all the physicians who referred the specimens to us: Dr Azais (Poitiers), Dr Boiron (Bordeaux), Pr Lassoued (Amiens), Dr Lelouque (Quimper), Dr Maisonneuve (La Roche/Yon), Dr Delbrel (Bordeaux), Dr Sadoun (Poitiers), and Dr Vuiller (Besancon).

References