Molecular genetic analysis for the B^3 allele

Lung-Chih Yu, Yuh-Ching Twu, Ming-Lun Chou, Ching-Yi Chang, Chia-Ying Wu, and Marie Lin

Molecular genetic analysis of 14 samples from unrelated individuals with the B^3 phenotype is reported here. Two different molecular changes in the blood group B gene were observed. One case was demonstrated to possess a $247G \rightarrow T$ mutation, which predicts an Asp37Tyr alteration. The B genes of the other 13 cases were shown to have a $G \rightarrow A$ mutation at the $+5$ nucleotide of intron 3 (intervening sequence 3 [IVS3] + 5G \rightarrow A). Reverse transcription polymerase chain reaction analysis showed that the complete exon 1–exon 7 B transcript was absent, and transcripts that skipped exon 3 were instead present in the RNA sample from the B_3 individual with the IVS3 + 5G \rightarrow A mutation. The result shows that the IVS3 + 5G \rightarrow A mutation destroys the conserved sequence of the splice donor site and leads to the skipping of exon 3 during messenger RNA processing. The B^3 transcript without exon 3 predicts a B-transferase product that lacks 19 amino acids in the N-terminal segment. (Blood. 2002;100:1490-1492)

© 2002 by The American Society of Hematology

From the Transfusion Medicine Laboratory, Department of Medical Research, and the Immunohematology Reference Laboratory, Mackay Memorial Hospital, Taipei, Taiwan.

Supported in part by National Health Research Institute grant NHRI-EX90-8601SL (M.L.) and National Science Council grant NSC 90-2320-B-195-004 (L.-C.Y.).

Reprints: Marie Lin, Transfusion Medicine Laboratory, Department of Medical Research, Mackay Memorial Hospital, 45 Ming-San Rd, Tamsui, Taipei County 251, Taiwan; e-mail: marilin@ms2.mmh.org.tw.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 U.S.C. section 1734.

© 2002 by The American Society of Hematology
individuals (Figure 2, lanes 2-13) had one allele with the IVS3 + 5G → A mutation at their ABO loci, as did the B3 propositus (lane 1), while none of the 30 group B individuals possessed the mutation (one of the results is shown in Figure 2, lane B). Further analysis demonstrated that all of the 12 B3 individuals with the IVS3 + 5G → A mutation were heterozygotes with one O allele as in the B3 propositus (data not shown). These results show that 13 of the 14 B3 individuals possess the B gene with the IVS3 + 5G → A mutation, while the mutation is virtually absent in the general group B population. One B3 individual did not possess the mutation in the B gene (Figure 2, lane 14).

One B3 individual possesses the B gene with 247G → T missense mutation

The ABO gene of the B3 individual without the IVS3 + 5G → A mutation was analyzed as described above. This B3 individual was shown to have a B/O phenotype, and a nucleotide change of 247G → T (translation initiation codon of ABO cDNA as nucleotides 1 to 3) was identified in the B gene. The 247 position locates in the exon 6 region, and the G → T mutation predicts an Asp83Tyr amino acid alteration. The nucleotide 247 position of the ABO genes of 30 group B individuals was inspected through PCR amplification and sequencing; none of them possessed a G → T mutation.

Exon 3 is skipped in the transcripts encoded from the B allele with the IVS3 + 5G → A mutation

As the IVS3 + 5G → A mutation changes the consensus sequence of a splice donor site (GT AGT),15-18 the transcript structures encoded from the B allele with the splice site mutation were inspected by reverse transcription PCR (RT-PCR). Two fragments (559 and 424 bp) were obtained from the RNA sample from the group B individual (Figure 3A, lane B). Direct sequencing of the products revealed that the larger fragment was composed of the complete B exon 2–exon 7 cDNA structure, while the smaller one had the same structure but without the exon 6 region. RT-PCR of the RNA of the B3 individual gave 2 smaller products (502 and 367 bp) (Figure 3A, lane B3). The 502-bp fragment was demonstrated to be the B exon 2–exon 7 structure with exon 3 skipped (Figure 3B), and the 367-bp fragment was the same structure without the exon 3 and exon 6 regions.

Although the B3 individual possesses a normal O3 allele, the O1 allele transcript was not detected in this RT-PCR analysis. This phenomenon is believed to result from a decreased stability of the O allele transcript.19 The presence of the transcripts without exon 6
The complete exon 1–exon 7 transcript of the B gene was shown to be virtually absent in the RNA of the B3 individual with the IVS3 + 5G → A mutation, and instead, both of the transcripts encoded from the B3 allele with the splice site mutation skipped exon 3. These results show that the IVS3 + 5G → A mutation in the B gene destroys the consensus of the splice donor site and thus leads to the skipping of exon 3 during mRNA splicing processes (Figure 4).

Exon 3 of the ABO gene comprises 57 bp, and the B3 transcript without exon 3 still retains the reading frame and predicts a protein product that lacks 19 amino acid residues in the N-terminal portion (Figure 5). The deleted segment of the 19 amino acids includes several residues of the predicted transmembrane domain of a normal B transferase. Whether this affects or changes the enzyme characteristic of the transferase is worth further investigation.

Acknowledgment

The authors would like to thank the Taipei Blood Donation Center for help in collecting B3 blood samples.

References

Molecular genetic analysis for the B^3 allele

Lung-Chih Yu, Yuh-Ching Twu, Ming-Lun Chou, Ching-Yi Chang, Chia-Ying Wu and Marie Lin