A monoclonal antibody directed against the von Willebrand factor moiety (vWF) of factor VIII-von Willebrand factor (FVIII-vWF), which blocks ristocetin-induced platelet aggregation as well as the binding of FVIII- vWF to platelets in the presence of ristocetin, inhibited platelet adherence to human artery subendothelium when present in normal flowing blood. This monoclonal antibody, CLB-RAg 35, inhibited platelet adherence as a function of the shear rate. At wall shear rates below 500 s-1, platelet adherence was not affected, but at higher shear rates platelet adherence was gradually inhibited, reaching an average of 11% of the normal value at 2,500 s-1. Indirect immunofluorescence established the reactivity of CLB-RAg 35 with vWF present in artery subendothelium. Pretreatment of normal vessel walls with this antibody inhibited adherence of platelets in blood from a patient with severe homozygous von Willebrand's disease and in blood from normal individuals. The inhibition was shear-rate dependent and significant at high shear rates (2,500 s-1). By adding increasing amounts of purified FVIII-vWF to normal blood, the inhibition was gradually overcome. These data indicate that vWF present in the vessel wall contributes appreciably to platelet adherence. At high wall shear rates, platelet adherence is mediated virtually completely by both plasma FVIII-vWF and vWF in the vessel wall. At low wall shear rates (below 500 s-1), platelet adherence occurs independent of FVIII-vWF in plasma and vWF in the vessel wall.